BZOJ2861 : 双向边定向为单向边
将每条双向边拆成两条单向边,若两条边中至少存在一条边使得删掉它之后图中SCC个数不变,则这条边可以定向。
将边中间加上点,变成删点问题。
对于每个SCC单独考虑,随便选择一个不是拆点出来的点S作为源。
则在正图或者反图的Dominator Tree上的所有非叶子节点均会影响连通性。
用Lengauer-Tarjan算法求出Dominator Tree即可。
时间复杂度$O((n+m)\alpha(n+m))$。
#include<cstdio>
const int N=500010,M=800010;
int n,m,lim,i,x,y,z,ans;bool vis[N],cut[N];
int g0[N],g1[N],v[M*2],nxt[M*2],ed,f[N],q[N],t,size,now[N],rk[N];
namespace DT{
int n,g1[N],g2[N],gd[N],v[M*3+N],nxt[M*3+N],ed;
int cnt,dfn[N],id[N],fa[N],f[N],mn[N],sd[N],idom[N];
inline void add(int*g,int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline void add(int x,int y){add(g1,x,y);add(g2,y,x);}
int F(int x){
if(f[x]==x)return x;
int y=F(f[x]);
if(sd[mn[x]]>sd[mn[f[x]]])mn[x]=mn[f[x]];
return f[x]=y;
}
void dfs(int x){
id[dfn[x]=++cnt]=x;
for(int i=g1[x];i;i=nxt[i])if(!dfn[v[i]])dfs(v[i]),fa[dfn[v[i]]]=dfn[x];
}
inline void tarjan(int S){
int i,j,k,x;
for(cnt=0,i=1;i<=n;i++)gd[i]=dfn[i]=id[i]=fa[i]=idom[i]=0,f[i]=sd[i]=mn[i]=i;
dfs(S);
for(i=n;i>1;i--){
for(j=g2[id[i]];j;j=nxt[j])F(k=dfn[v[j]]),sd[i]=sd[i]<sd[mn[k]]?sd[i]:sd[mn[k]];
add(gd,sd[i],i);
for(j=gd[f[i]=x=fa[i]];j;j=nxt[j])F(k=v[j]),idom[k]=sd[mn[k]]<x?mn[k]:x;
gd[x]=0;
}
for(i=2;i<=n;add(gd,idom[i],i),i++)if(idom[i]!=sd[i])idom[i]=idom[idom[i]];
}
inline void init(int _n){
n=_n;ed=0;
for(int i=1;i<=n;i++)g1[i]=g2[i]=0;
}
}
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline void add(int x,int y){
v[++ed]=y;nxt[ed]=g0[x];g0[x]=ed;
v[++ed]=x;nxt[ed]=g1[y];g1[y]=ed;
}
void dfs1(int x){
vis[x]=1;
for(int i=g0[x];i;i=nxt[i])if(!vis[v[i]])dfs1(v[i]);
q[++t]=x;
}
void dfs2(int x,int y){
vis[x]=0,f[x]=y;
now[rk[x]=++size]=x;
for(int i=g1[x];i;i=nxt[i])if(vis[v[i]])dfs2(v[i],y);
}
inline void solve(int o){
int i,j;
for(i=1;i<=size;i++)if(now[i]>lim)break;
if(i>size)return;
DT::init(size);
for(i=1;i<=size;i++)for(j=g0[now[i]];j;j=nxt[j])if(f[v[j]]==o)DT::add(i,rk[v[j]]);
for(i=1;i<=size;i++)if(now[i]<=lim){
DT::tarjan(i);
break;
}
for(i=1;i<=size;i++)if(DT::gd[DT::dfn[i]])cut[now[i]]=1;
DT::init(size);
for(i=1;i<=size;i++)for(j=g0[now[i]];j;j=nxt[j])if(f[v[j]]==o)DT::add(rk[v[j]],i);
for(i=1;i<=size;i++)if(now[i]<=lim){
DT::tarjan(i);
break;
}
for(i=1;i<=size;i++)if(DT::gd[DT::dfn[i]])cut[now[i]]=1;
}
int main(){
read(n),read(m);lim=n;
while(m--){
read(x),read(y),read(z);
if(x==y){ans+=z==2;continue;}
if(z==1)add(x,y);
else{
add(x,++n);
add(n,y);
add(y,++n);
add(n,x);
}
}
for(i=1;i<=n;i++)if(!vis[i])dfs1(i);
for(i=n;i;i--)if(vis[q[i]]){
size=0;
dfs2(q[i],q[i]);
solve(q[i]);
}
for(i=lim+1;i<=n;i+=2)if(!cut[i]||!cut[i+1])ans++;
return printf("%d",ans),0;
}
BZOJ2861 : 双向边定向为单向边的更多相关文章
- SSL双向认证和SSL单向认证的流程和区别
refs: SSL双向认证和SSL单向认证的区别https://www.jianshu.com/p/fb5fe0165ef2 图解 https 单向认证和双向认证!https://cloud.tenc ...
- 什么是SSL双向认证,与单向认证证书有什么区别?
SSL/TLS证书是用于用户浏览器和网站服务器之间的数据传输加密,实现互联网传输安全保护,大多数情况下指的是服务器证书.服务器证书是用于向浏览器客户端验证服务器,这种是属于单向认证的SSL证书.但是, ...
- Python 双向队列Deque、单向队列Queue 模块使用详解
Python 双向队列Deque 模块使用详解 创建双向队列Deque序列 双向队列Deque提供了类似list的操作方法: #!/usr/bin/python3 import collections ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- https单向认证和双向认证
单向认证: .clinet<--server .clinet-->server .client从server处拿到server的证书,通过公司的CA去验证该证书,以确认server是真实的 ...
- 基于openssl的单向和双向认证
1.前言 最近工作涉及到https,需要修改nginx的openssl模块,引入keyless方案.关于keyless可以参考CloudFlare的官方博客: https://blog.cloudfl ...
- 单向和双向tvs管
tvs管器件按极性可分为单极性和双极性两种,即单向tvs管和双向tvs管. 单向tvs管保护器件仅能对正脉冲或者负脉冲进行防护,而双向tvs管保护器件一端接要保护的线路,一端接地,无论来自反向还 ...
- SSL单向认证和双向认证说明
SSL单向认证和双向认证说明 一.SSL双向认证具体过程 浏览器发送一个连接请求给安全服务器. 服务器将自己的证书,以及同证书相关的信息发送给客户浏览器. 客户浏览器检查服务器送过来的证书是否是由自己 ...
- ORACLE GoldenGate在Windows与AIX平台ORACLE的单向、双向数据传输配置及其测试
第1章...... GoldenGate概述 1.1 GoldenGate技术原理 1.2 GoldenGate可靠的复制 1.3 GoldenGate ...
随机推荐
- 转载:2.2 Nginx配置的通用语法《深入理解Nginx》(陶辉)
原文:https://book.2cto.com/201304/19625.html Nginx的配置文件其实是一个普通的文本文件.下面来看一个简单的例子.user nobody; worker_p ...
- Android:注册登录
注册登录的实现 先在layout里新建一个xml文件: //login.xml <?xml version="1.0" encoding="utf-8"? ...
- Python-CSS进阶
0. 什么时候该用什么布局 <!-- 定位布局: 以下两种布局不易解决的问题, 盒子需要脱离文档流处理 --> <!-- 浮动布局: 一般有block特性的盒子,水平排列显示 --& ...
- Coursera台大机器学习技法课程笔记05-Kernel Logistic Regression
这一节主要讲的是如何将Kernel trick 用到 logistic regression上. 从另一个角度来看soft-margin SVM,将其与 logistic regression进行对比 ...
- PHP递归排序
递归算法对于任何一个编程人员来说,应该都不陌生.因为递归这个概念,无论是在PHP语言还是Java等其他编程语言中,都是大多数算法的灵魂. 对于PHP新手来说,递归算法的实现原理可能不容易理解.但是只要 ...
- python+selenium十一:jQuery和js语法、js处理iframe
selenium 执行jQuery/js语法 driver.execute_script(jQuery/js) 1.jQuery jQuery只支持css语法: jquery = '$(CSS).va ...
- extern "C" 回顾
引入:在测试"extern "C" 与gcc, g++无关"时,使用到了extern "C"的概念,网上找篇文章回顾一下. 试验如下: te ...
- 【【C++ Primer 第15章】 虚析构函数
学习资料 • C++中基类的析构函数为什么要用virtual虚析构函数 虚析构函数 1. 正文 直接的讲,C++中基类采用virtual虚析构函数是为了防止内存泄漏.具体地说,如果派生类中申请了内存空 ...
- 在.NET环境下使用KAFKA
近日基于项目的解耦与削峰需求,决定在项目中引入消息队列.因为同时项目部分业务已经迁移到Java上,所以消息队列组件又要兼顾Java环境下的使用,选来选去对比了RabbitMQ.RocketMQ和Kaf ...
- HDU 1851 (N个BASH博弈子游戏)
题意:n堆石子,分别有M1,M2,·······,Mn个石子,各堆分别最多取L1,L2,·····Ln个石头,两个人分别取,一次只能从一堆中取,取走最后一个石子的人获胜.后选的人获胜输出Yes,否则输 ...