国际惯例的题面:

听说这题的正解是找什么规律,数位DP是暴力......
好的,我就写暴力了QAQ。
我们令f[i][la][lb][lc]表示二进制从高到低考虑位数为i(最低位为1),是否顶n上界,是否顶m上界,是否顶k下界的数字和,g[i][la][lb][lc]表示(同上定义)的数字个数。
转移的话,先计算出这一位n,m,k的限制,然后枚举这一位第一个数和第二个数填什么,判定xor和是否满足k的条件,转移即可。
记忆化搜索实现较为简单。
注意最后计算答案的时候,方案数乘以k可能爆long long,所以k要先取模。

代码:
(就算我WA了,TLE了,代码写的像屎一样,也不include<iostream>!pair真好用。)

 #include<cstdio>
#include<algorithm>
#include<cstring>
typedef long long int lli;
const int maxn=1e2+1e1; lli f[maxn][][][],g[maxn][][][]; // f is sum , g is count .
int ba[maxn],bb[maxn],bc[maxn],mod; inline void dfs(int bit,int la,int lb,int lc) { // bit is the bit that we are determining in range [1,64] .
if( ~f[bit][la][lb][lc] ) return;
if( !bit ) {
f[bit][la][lb][lc] = , g[bit][la][lb][lc] = ;
return;
} int lima = !la || ba[bit] , limb = !lb || bb[bit] , limc = lc && bc[bit];
f[bit][la][lb][lc] = g[bit][la][lb][lc] = ;
for(int i=;i<=lima;i++) for(int j=;j<=limb;j++) if( ( i ^ j ) >= limc ) {
int ta = la&&i==lima , tb = lb&&j==limb , tc = lc&&(i^j)==limc;
dfs(bit-,ta,tb,tc);
g[bit][la][lb][lc] = ( g[bit][la][lb][lc] + g[bit-][ta][tb][tc] ) % mod ,
f[bit][la][lb][lc] = ( f[bit][la][lb][lc] + f[bit-][ta][tb][tc] + ( (lli) ( i ^ j ) << ( bit - ) ) % mod * g[bit-][ta][tb][tc] % mod ) % mod;
}
} inline int cutbit(lli t,int* dst) {
int ret = ; memset(dst,,sizeof(int)*maxn);
while(t) dst[++ret] = t & , t >>= ;
return ret;
} int main() {
static int T,mx;
static lli n,m,k,ans;
scanf("%d",&T);
while(T--) {
scanf("%lld%lld%lld%d",&n,&m,&k,&mod) , --n , --m , memset(f,-,sizeof(f)) , memset(g,,sizeof(g)) , mx = std::max( cutbit(k,bc) , std::max( cutbit(n,ba) , cutbit(m,bb) ) ) ,
dfs(mx,,,) , ans = (f[mx][][][]-g[mx][][][]*(k%mod)%mod+mod)%mod , printf("%lld\n",ans);
}
return ;
}

く遠く続いてる 空
遥远地 遥远地 无尽延伸的天空
その向こうで 君は 何想う
彼方的你 现在正想些什么
いつか消える あの星の下
在那颗终会陨落的星星下
永遠(とわ)を願い 想い見上げ
翘首仰望着 祈求着永恒

強く弱く光を放つ
灿烂的 黯淡的 明灭闪耀的星光
君の近くに 北斗七星
在你身边的 北斗七星
そんな 輝きであるように
我想像它一样照耀着你
君を想い 願い掛けて
思念着你 许下了愿望

4513: [Sdoi2016]储能表 数位DP的更多相关文章

  1. BZOJ 4513: [Sdoi2016]储能表 [数位DP !]

    4513: [Sdoi2016]储能表 题意:求\[ \sum_{i=0}^{n-1}\sum_{j=0}^{m-1} max((i\oplus j)-k,0) \] 写出来好开心啊...虽然思路不完 ...

  2. BZOJ.4513.[SDOI2016]储能表(数位DP)

    BZOJ 洛谷 切了一道简单的数位DP,终于有些没白做题的感觉了...(然而mjt更强没做过这类的题也切了orz) 看部分分,如果\(k=0\),就是求\(\sum_{i=0}^n\sum_{j=0} ...

  3. 【BZOJ4513】[Sdoi2016]储能表 数位DP

    [BZOJ4513][Sdoi2016]储能表 Description 有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号.每个格子都储存着能量.最初,第 i 行第 ...

  4. [SDOI2016]储能表——数位DP

    挺隐蔽的数位DP.少见 其实减到0不减了挺难处理.....然后就懵了. 其实换个思路: xor小于k的哪些都没了, 只要留下(i^j)大于等于k的那些数的和以及个数, 和-个数*k就是答案 数位DP即 ...

  5. BZOJ4513: [Sdoi2016]储能表(数位dp)

    题意 题目链接 Sol 一点思路都没有,只会暴力,没想到标算是数位dp??Orz 首先答案可以分成两部分来统计 设 \[ f_{i,j}= \begin{aligned} i\oplus j & ...

  6. [bzoj4513][SDOI2016]储能表——数位dp

    题目大意 求 \[\sum_{i = 0}^{n-1}\sum_{j=0}^{m-1} max((i\ xor\ j)\ -\ k,\ 0)\ mod\ p\] 题解 首先,开始并没有看出来这是数位d ...

  7. 4513: [Sdoi2016]储能表

    4513: [Sdoi2016]储能表 链接 分析: 数位dp. 横坐标和纵坐标一起数位dp,分别记录当前横纵坐标中这一位是否受n或m的限制,在记录一维表示当前是否已经大于k了. 然后需要两个数组记录 ...

  8. bzoj 4513 [Sdoi2016]储能表

    题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4513 题解 要求的式子 用数位dp的方法去做 我们把式子拆开 变成 $\sum_{i=0}^ ...

  9. 【LG4067】[SDOI2016]储能表

    [LG4067][SDOI2016]储能表 题面 洛谷 题解 这种$n$.$m$出奇的大的题目一看就是数位$dp$啦 其实就是用一下数位$dp$的套路 设$f[o][n][m][k]$表示当前做到第$ ...

随机推荐

  1. 如何在Linux下写无线网卡的驱动【转】

    转自:http://www.crifan.com/files/doc/docbook/linux_wireless/release/html/linux_wireless.html 版本:v0.3 H ...

  2. adb启动和停止android app方法

    一.启动app adb shell am start  包名/MainActivity 上面涉及到的包名及mainactivity获取办法 方法一: 1.adb shell 2.dumpsys act ...

  3. zabbix常见报错问题处理

    ①报错: zabbix_agentd [20529]: cannot create Semaphore: [28] No space left on device zabbix_agentd [205 ...

  4. PL/SQL第三章 基础查询语句

    --查询所有列 select * from tab_name|view_name; SELECT * FROM emp; SELECT * FROM (SELECT * FROM emp); --查询 ...

  5. HTML常用特殊字符

    网页特殊符号HTML代码大全   HTML特殊字符编码大全:往网页中输入特殊字符,需在html代码中加入以&开头的字母组合或以&#开头的数字.下面就是以字母或数字表示的特殊符号大全. ...

  6. Expm 8_1 区间划分问题

      [问题描述] 给定一组报告,其中的每个报告设置了一个开始时间si和结束时间fi.设计与实现一个算法,对这组报告分配最少数量的教室,使得这些报告能无冲突的举行. package org.xiu68. ...

  7. 改变input标签中placeholder显示的颜色

    ::-webkit-input-placeholder { /* WebKit browsers */ color: #A9A9A9; } :-moz-placeholder { /* Mozilla ...

  8. react之异步请求数据,render先行渲染报错,未拿到数据

    import React from 'react' import {connect} from 'react-redux' import { Redirect} from 'react-router- ...

  9. LeetCode(54):螺旋矩阵

    Medium! 题目描述: 给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素. 示例 1: 输入: [ [ 1, 2, 3 ], [ 4, 5, ...

  10. SPLAY,LCT学习笔记(六)

    这应该暂时是个终结篇了... 最后在这里讨论LCT的一个常用操作:维护虚子树信息 这也是一个常用操作 下面我们看一下如何来维护 以下内容转自https://blog.csdn.net/neither_ ...