欢迎访问~原文出处——博客园-zhouzhendong

去博客园看该题解


题目传送门 - 洛谷2973


题意概括

  有N个城市,M条双向道路组成的地图,城市标号为1到N。“西瓜炸弹”放在1号城市,保证城市1至少连接着一个其他城市。“西瓜炸弹”有P/Q的概率会爆炸,每次进入其它城市时,爆炸的概率相同。如果它没有爆炸,它会随机的选择一条道路到另一个城市去,对于当前城市所连接的每一条道路都有相同的可能性被选中。对于给定的地图,求每个城市“西瓜炸弹”爆炸的概率。


题解

  通过概率关系构建方程:

  其中in[j]表示节点j的出度,$F_i$ 表示最终在节点 $i$ 爆炸的概率。

$$F_i = \sum_{存在j到 i 的边}\cfrac{(1-\frac PQ)F_j}{in[j]}+\cfrac PQ \cdot [i=1]$$

  然后高斯消元跑一跑就可以了。


代码

#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int N=300+5;
const double Eps=1e-9;
int n,m,P,Q,cnt[N];
bool g[N][N];
double p,a[N][N],x[N];
void Gauss(){
int row=n,col=n,k,c;
for (k=c=1;k<=row,c<=col;k++,c++){
int Mk=k;
for (int i=k+1;i<=row;i++)
if (fabs(a[Mk][c])<fabs(a[i][c]))
Mk=i;
if (fabs(a[Mk][c])<Eps){
k--;
continue;
}
if (k!=Mk)
for (int i=c;i<=col+1;i++)
swap(a[k][i],a[Mk][i]);
for (int i=k+1;i<=row;i++)
for (int j=col+1;j>=c;j--)
a[i][j]=a[i][j]-a[k][j]*a[i][c]/a[k][c];
}
memset(x,0,sizeof x);
for (int i=k;i>=1;i--){
x[i]=a[i][n+1];
for (int j=i+1;j<=n;j++)
x[i]-=a[i][j]*x[j];
x[i]/=a[i][i];
}
}
int main(){
scanf("%d%d%d%d",&n,&m,&P,&Q);
p=double(P)/double(Q);
memset(g,0,sizeof g);
memset(cnt,0,sizeof cnt);
for (int i=1,a,b;i<=m;i++){
scanf("%d%d",&a,&b);
g[a][b]=g[b][a]=1;
cnt[a]++,cnt[b]++;
}
memset(a,0,sizeof a);
a[1][n+1]=p;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++){
if (i==j){
a[i][j]=1;
continue;
}
if (!g[i][j])
continue;
double del=(1.0-p)/double(cnt[j]);
a[i][j]-=del;
}
Gauss();
for (int i=1;i<=n;i++)
if (fabs(x[i])<Eps)
x[i]=0;
for (int i=1;i<=n;i++)
printf("%.9lf\n",x[i]);
return 0;
}

以前打错的公式就让他暂时存一下吧……

洛谷2973 [USACO10HOL]赶小猪Driving Out the Piggi… 概率 高斯消元的更多相关文章

  1. [Luogu2973][USACO10HOL]赶小猪Driving Out the Piggi…

    题目描述 The Cows have constructed a randomized stink bomb for the purpose of driving away the Piggies. ...

  2. 洛谷P2973 [USACO10HOL]赶小猪(高斯消元 期望)

    题意 题目链接 Sol 设\(f[i]\)表示炸弹到达\(i\)这个点的概率,转移的时候考虑从哪个点转移而来 \(f[i] = \sum_{\frac{f(j) * (1 - \frac{p}{q}) ...

  3. 洛谷P2973 [USACO10HOL]赶小猪

    https://www.luogu.org/problemnew/show/P2973 dp一遍,\(f_i=\sum_{edge(i,j)}\frac{f_j\times(1-\frac{P}{Q} ...

  4. Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP

    有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...

  5. 洛谷P4457/loj#2513 [BJOI2018]治疗之雨(高斯消元+概率期望)

    题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\( ...

  6. 洛谷P4035 [JSOI2008]球形空间产生器(高斯消元)

    洛谷题目传送门 球啊球 @xzz_233 qaq 高斯消元模板题,关键在于将已知条件转化为方程组. 可以发现题目要求的未知量有\(n\)个,题目却给了我们\(n+1\)个点的坐标,这其中必有玄机. 由 ...

  7. 洛谷 P3904 三只小猪

    题目背景 你听说过三只小猪的故事吗?这是一个经典的故事.很久很久以前,有三只小猪.第一只小猪用稻草建的房子,第二个小猪用木棍建的房子,第三个小猪则使用砖做为材料.一只大灰狼想吃掉它们并吹倒了稻草和木棍 ...

  8. 洛谷2971 [USACO10HOL]牛的政治Cow Politics

    原题链接 假设只有一个政党,那么这题就退化成求树的直径的问题了,所以我们可以从此联想至\(k\)个政党的情况. 先处理出每个政党的最大深度,然后枚举每个政党的其它点,通过\(LCA\)计算长度取\(\ ...

  9. 【洛谷U20626】gemo 容斥 FWT 高斯消元

    题目大意 给你一个无向图,有\(m\)个询问,每次给你一个点\(x\)和一个点集\(S\),问你从\(x\)开始走,每次从一个点随机的走到与这个点相邻的点,问你访问\(S\)中每个点至少一次的期望步数 ...

随机推荐

  1. JS ——document、“或”、event(事件对象)

    1.document <document>是所以HTML的最高节点,比<html>的等级还要高. <document>的第一个子节点是“!”——document.c ...

  2. 第16月第23天 atos

    1. grep --after-context=2 "Binary Images:" *crash xcrun atos -o zhiniao_adhoc_stg1.app.dSY ...

  3. MySQL Load Data InFile 数据导入数据库

    常用如下: Load Data InFile 'C:/Data.txt' Into Table `TableTest` Lines Terminated By '\r\n'; 这个语句,字段默认用制表 ...

  4. jquery 学习(五) - CSS 操作

    HTML + CSS 样式 /*CSS样式*/<style> body{ margin: 0; } div{ width: 100%; height: 2000px; background ...

  5. Debian & CentOS建立本地iso源

    在宿舍搞开发的时候经常遇到有些工具需要安装,没有网络,这时候只能靠mount本地的iso镜像来搞,结果像Debian有3张安装光盘,CentOS有2张光盘,有时候安装包不在第一张光盘里,而在第二张光盘 ...

  6. linux 中的 open() read() write() close() 函数

    1. open()函数 功能描述:用于打开或创建文件,在打开或创建文件时可以指定文件的属性及用户的权限等各种参数. 所需头文件:#include <sys/types.h>,#includ ...

  7. opencv入门指南(转载)

    转载链接:http://blog.csdn.net/morewindows/article/details/8426318 网上的总结的一些用openncv的库来做的事: 下面列出OpenCV入门指南 ...

  8. caffe源码阅读(1)_整体框架和简介(摘录)

    原文链接:https://www.zhihu.com/question/27982282 1.Caffe代码层次.回答里面有人说熟悉Blob,Layer,Net,Solver这样的几大类,我比较赞同. ...

  9. UML和模式应用1: 面向对象的分析与设计

    1.基本术语说明 items note OOA/D  面向对象的分析与设计 UML 描述.构造和文档化系统制品的可视化语言 模式 问题解决方案的公式 2. 本书的主要内容 本书的主旨是对应用了UML和 ...

  10. Python3学习笔记15-迭代器与生成器

    生成器 如果创建一个有很多元素的列表,但是只需要访问前几个元素,后面的元素占着的空间就白白浪费了 在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间. 在Pytho ...