RealPhobia

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 938    Accepted Submission(s): 435

Problem Description
Bert is a programmer with a real fear of floating point arithmetic. Bert has quite successfully used rational numbers to write his programs but he does not like it when the denominator grows large. Your task is to help Bert by writing a program that decreases the denominator of a rational number, whilst introducing the smallest error possible. For a rational number A/B, where B > 2 and 0 < A < B, your program needs to identify a rational number C/D such that:
1. 0 < C < D < B, and
2. the error |A/B - C/D| is the minimum over all possible values of C and D, and
3. D is the smallest such positive integer.
 
Input
The input starts with an integer K (1 <= K <= 1000) that represents the number of cases on a line by itself. Each of the following K lines describes one of the cases and consists of a fraction formatted as two integers, A and B, separated by “/” such that:
1. B is a 32 bit integer strictly greater than 2, and
2. 0 < A < B
 
Output
For each case, the output consists of a fraction on a line by itself. The fraction should be formatted as two integers separated by “/”.
 
Sample Input
3
1/4
2/3
13/21
 
Sample Output
1/3
1/2
8/13
 
Source
 

    | A/B - C/D |= minn   <=>  | AD - BC| / BD =minn

    如果AB可以约分的话直接约分就是答案。否则说明 gcd(A,B)=1, 我们有 A*D+B*C = gcd(A,B) = 1,原分子加了绝对值,有两种情况

D>0,C<0 或者是 D<0,C>0  ,解完之后对D分正负讨论一下那个使得分母更大就选那个,分子已经是1了。

  因为D<B,所以记得%B,正负分别对应唯一的一个解。

  

 #include<iostream>
#include<cstdio>
using namespace std;
#define LL long long
#define mp make_pair
#define pb push_back
#define inf 0x3f3f3f3f
void exgcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){d=a;x=;y=;}
else{exgcd(b,a%b,d,y,x);y-=x*(a/b);}
}
int main(){
LL a,b,d,x,y;
int t;
cin>>t;
while(t--){
scanf("%lld/%lld",&a,&b);
exgcd(a,b,d,x,y);
if(d!=){
printf("%lld/%lld\n",a/d,b/d);
}
else{
LL d1,d2,c1,c2;
d1=(x%b+b)%b,c1=-(-a*d1)/b;
d2=-(x%b-b)%b,c2=(+a*d2)/b;
if(d1>d2){
printf("%lld/%lld\n",c1,d1);
}
else{
printf("%lld/%lld\n",c2,d2);
}
}
}
return ;
}

hdu-4180-exgcd的更多相关文章

  1. HDU 1211 EXGCD

    EXGCD的模板水题 RSA算法给你两个大素数p,q定义n=pq,F(n)=(p-1)(q-1) 找一个数e 使得(e⊥F(n)) 实际题目会给你e,p,q计算d,$de \mod F(n) = 1$ ...

  2. hdu 4180

    题意; 求接近规定 分数 的 最大分数用到 farey 数列的第二条性质 1 #include <iostream> #include<stdio.h> using names ...

  3. HDU 5377 (Exgcd + 原根)

    转载自:大牛 知道一个定理了 a ^ x = y (mod p) ===>>   logd(a) * x = logd(y) (mod O(p) )      d 为 p 的 原根,  O ...

  4. HDU 4180 扩展欧几里得

    RealPhobia Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. HDU 2239 polya计数 欧拉函数

    这题模数是9937还不是素数,求逆元还得手动求. 项链翻转一样的算一种相当于就是一种类型的置换,那么在n长度内,对于每个i其循环节数为(i,n),但是由于n<=2^32,肯定不能直接枚举,所有考 ...

  6. A/B HDU - 1576 (exgcd)

    要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Input数据的第一行是一个T,表示有T组数据. 每组数据有两 ...

  7. HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】

    Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...

  8. 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...

  9. HDU 5768:Lucky7(中国剩余定理 + 容斥原理)

    http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Problem Description   When ?? was born, seven ...

  10. HDU 2669 第六周 I题

    Description The Sky is Sprite.  The Birds is Fly in the Sky.  The Wind is Wonderful.  Blew Throw the ...

随机推荐

  1. webpack用 babel将ES6转译ES5

    webpack webpack.config.js配置文件 module.exports = { entry: './es6.js', // 入口文件路径 output: { filename: &q ...

  2. 常用linux,DOS命令——持续更新

    cd 文件夹名 进入某个文件夹 cd ../ 退出该级目录进入上一级 cd ../../ 退出该级目录进入上上级 cd ../../demo 退出该级目录进入上上级的目录 d: 回车 进入d盘 ls ...

  3. vue.js精讲02

    2017-09-17 笔记及源码地址 : https://github.com/wll8/vue_note vue 中的事件深入. 事件: @click/mouseover…事件简写: @ 如 @cl ...

  4. Linux命令之sudo

    在 Linux  系统中,由于 root 的权限过大,一般情况下都不使用它.只有在一些特殊情况下才采用登录root 执行管理任务,一般情况下临时使用 root 权限多采用 su 和 sudo 命令. ...

  5. hdu 6199 gems gems gems dp

    gems gems gems Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) P ...

  6. 配置多个版本的jdk

    引言: 由于公司有多个项目都需要我开发,而各个项目所依赖的jdk版本又不同,因此需要配置多个jdk; 配置方法: 什么也不说了,直接上图: 然后在其他需要制定Tomcat的地方直接引用JAVA_HOM ...

  7. 关于git提示“warning: LF will be replaced by CRLF”终极解答

    一.发现问题 windows平台下使用git add,git deploy 文件时经常出现“warning: LF will be replaced by CRLF” 的提示. 网上很多解决办法提到: ...

  8. Token和SessionStorage(会话存储对象)

    sessionStorage数据只在当前标签页共享 存在本地   关闭浏览器后会清除数据(关闭标签页不会清楚) localStorage数据会存在浏览器中  浏览器关了数据也还在 只有清除缓存才会消失 ...

  9. vue中 父子组件的通讯

    1.父组件可以使用 props 把数据传给子组件. 2.子组件可以使用 $emit 触发父组件的自定义事件 实例: 父组件: layout.vue  子组件:logform.vue 子组件: < ...

  10. Cordova插件:InAppBrowser

    版权声明:本文为博主原创文章,转载请注明出处 一.应用场景 我们在做cordova app开发的时候,可能会经常遇到这种需求.比如在你的app中,你想打开一个URL,但是又不想跳转到系统的浏览器去打开 ...