bzoj

洛谷

这题意是不是不太清楚

真正题意:求$$f_i=\sum_{j=1}^{\lfloor iA \rfloor} \frac{M_iM_j}{i-j}$$

似乎只能\(O(n*\lfloor n*A \rfloor)\)求

但是,注意只要结果的相对误差不超过 5% 即可

于是对于较大的\(i\)来说,\(f_i\)可以近似的看为\(M_i*\frac{\sum_{j=1}^{\lfloor i*A \rfloor} M_j}{i-\frac{\lfloor i*A \rfloor}{2}}\)

因为\(A\)是一个不超过0.35的实数,并且\(i\)较大时\(i-j\)也会比较大,所以近似一下可以接受

至于为什么,emmm你猜

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define inf 2099999999
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define db double
#define eps (1e-5) using namespace std;
const int N=100000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,nn;
db a,m[N],ans; int main()
{
n=rd();scanf("%lf",&a);
for(int i=1;i<=n;i++) scanf("%lf",&m[i]);
nn=min(3000,n);
for(int i=1;i<=nn;i++)
{
int mm=(int)(i*a+eps);
ans=0;
for(int j=1;j<=mm;j++) ans+=m[j]/(db)(i-j);
ans*=m[i];
printf("%.8lf\n",ans);
}
db tm=0;
for(int i=nn+1,la=1;i<=n;i++)
{
int mm=(int)(i*a+eps);
while(la<=mm) tm+=m[la++];
ans=m[i]*tm/((db)i-(db)mm/2);
printf("%.8lf\n",ans);
}
return 0;
}

luogu P3198 [HNOI2008]遥远的行星的更多相关文章

  1. P3198 [HNOI2008]遥远的行星

    传送门 发现 $A$ 不大,又允许较大的误差,考虑乱搞 考虑求出每个位置的答案,因为有 $1e5$ 个位置,所以每个位置差不多可以计算 $100$ 次贡献 所以把每个可以贡献的位置尽量均匀分成 $10 ...

  2. bzoj1011 [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2480  Solved ...

  3. 【bzoj1011】[HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 3711  Solved ...

  4. BZOJ 1011 [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2559  Solved ...

  5. 1011: [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2241  Solved ...

  6. BZOJ 1011 [HNOI2008]遥远的行星 (误差分析)

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 4974  Solved ...

  7. BZOJ1011 [HNOI2008]遥远的行星 【奇技淫巧】

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special Judge Submit: 5058  Solve ...

  8. [HNOI2008]遥远的行星

    题目描述 直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量,故直观上说每颗行 ...

  9. BZOJ1011:[HNOI2008]遥远的行星(乱搞)

    Description 直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量, ...

随机推荐

  1. codeforces9A

    Die Roll CodeForces - 9A Yakko,Wakko和Dot,世界著名的狂欢三宝,哈哈,不知道你是否看过这个动画片. 某一天,过年了,他们决定暂定卡通表演,并去某些地方旅游一下.Y ...

  2. 一本通1536数星星 Stars

    1536:[例 2]数星星 Stars 时间限制: 256 ms         内存限制: 65536 KB [题目描述] 原题来自:Ural 1028 天空中有一些星星,这些星星都在不同的位置,每 ...

  3. 我的Linux系统九阴真经

    在今天,互联网的迅猛发展,科技技术也日新月异,各种编程技术也如雨后春笋一样,冒出尖来了.各种创业公司也百花齐放百家争鸣,特别是针对服务行业,新型互联网服务行业,共享经济等概念的公司,越来越多.有一些公 ...

  4. String在内存中如何存储(Java)

    JDK1.8中JVM把String常量池移入了堆中,同时取消了“永久代”,改用元空间代替(Metaspace)java中对String对象特殊对待,所以在heap区域分成了两块,一块是字符串常量池(S ...

  5. mvc 验证登录

    很多时候,我们需要多个页面验证用户是否登录 有2中方法. 一种是继承 Attrbuite属性,添加验证,这个可以网上搜索. 我一般使用下面的方式 创建BaseWebController继承Contro ...

  6. day5 算数,比较,赋值,逻辑运算符,表达式

    算数运算符 + 加- 减* 乘/ 除// 整除% 取余** 指数 算数优先级: 指数>乘除>加减 ps:python里面区分优先级只有小括号 () 没有 [] 和 {} , 比较运算符 = ...

  7. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  8. Leetcode 242.有效的字母异位词 By Python

    给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的一个字母异位词. 示例 1: 输入: s = "anagram", t = "nagaram" ...

  9. 【codeforces 103E】 Buying Sets

    http://codeforces.com/problemset/problem/103/E (题目链接) 题意 给出$n$个数,每个数与一个集合相关联.从其中选出最小的若干个数,选出的数的个数与这些 ...

  10. Service 启动Activity

    1, 在BroadcastReceiver中启动Activity的问题  *  * 如果在BroadcastReceiver的onReceive()方法中如下启动一个Activity  * Inten ...