luogu P3198 [HNOI2008]遥远的行星
这题意是不是不太清楚
真正题意:求$$f_i=\sum_{j=1}^{\lfloor iA \rfloor} \frac{M_iM_j}{i-j}$$
似乎只能\(O(n*\lfloor n*A \rfloor)\)求
但是,注意只要结果的相对误差不超过 5% 即可
于是对于较大的\(i\)来说,\(f_i\)可以近似的看为\(M_i*\frac{\sum_{j=1}^{\lfloor i*A \rfloor} M_j}{i-\frac{\lfloor i*A \rfloor}{2}}\)
因为\(A\)是一个不超过0.35的实数,并且\(i\)较大时\(i-j\)也会比较大,所以近似一下可以接受
至于为什么,emmm你猜
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define inf 2099999999
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define db double
#define eps (1e-5)
using namespace std;
const int N=100000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,nn;
db a,m[N],ans;
int main()
{
n=rd();scanf("%lf",&a);
for(int i=1;i<=n;i++) scanf("%lf",&m[i]);
nn=min(3000,n);
for(int i=1;i<=nn;i++)
{
int mm=(int)(i*a+eps);
ans=0;
for(int j=1;j<=mm;j++) ans+=m[j]/(db)(i-j);
ans*=m[i];
printf("%.8lf\n",ans);
}
db tm=0;
for(int i=nn+1,la=1;i<=n;i++)
{
int mm=(int)(i*a+eps);
while(la<=mm) tm+=m[la++];
ans=m[i]*tm/((db)i-(db)mm/2);
printf("%.8lf\n",ans);
}
return 0;
}
luogu P3198 [HNOI2008]遥远的行星的更多相关文章
- P3198 [HNOI2008]遥远的行星
传送门 发现 $A$ 不大,又允许较大的误差,考虑乱搞 考虑求出每个位置的答案,因为有 $1e5$ 个位置,所以每个位置差不多可以计算 $100$ 次贡献 所以把每个可以贡献的位置尽量均匀分成 $10 ...
- bzoj1011 [HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2480 Solved ...
- 【bzoj1011】[HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 3711 Solved ...
- BZOJ 1011 [HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2559 Solved ...
- 1011: [HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2241 Solved ...
- BZOJ 1011 [HNOI2008]遥远的行星 (误差分析)
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 4974 Solved ...
- BZOJ1011 [HNOI2008]遥远的行星 【奇技淫巧】
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special Judge Submit: 5058 Solve ...
- [HNOI2008]遥远的行星
题目描述 直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量,故直观上说每颗行 ...
- BZOJ1011:[HNOI2008]遥远的行星(乱搞)
Description 直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量, ...
随机推荐
- Bootstrap滚动监控器
前面的话 滚动监听插件是用来根据滚动条所处的位置来自动更新导航项的.滚动导航条下面的区域并关注导航项的变化,下拉菜单中的条目也会自动高亮显示.本文将详细介绍Bootstrap滚动监控器 基本用法 滚动 ...
- codeforces 1051 D. Bicolorings (DP)
D. Bicolorings time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- Spark_RDD之简单Java函数接口
函数名 实现的方法 用途 Function<T, R> R call(T) 接收一个输入值并返回一个输出值,用于类似 map() 和filter() 等操作中 Function2<T ...
- BZOJ2595 WC2008游览计划(斯坦纳树)
斯坦纳树板子题. 考虑状压dp,设f[i][j][S]表示当前在点(i,j)考虑转移,其所在的联通块包含的关键点集(至少)为S的答案. 转移时首先枚举子集,有f[i][j][S]=min{f[i][j ...
- 【BZOJ3817/UOJ42】Sum(类欧)
[BZOJ3817/UOJ42]Sum(类欧) 题面 BZOJ UOJ 题解 令\(x=\sqrt r\),那么要求的式子是\[\sum_{d=1}^n(-1)^{[dx]}\] 不难发现,对于每个\ ...
- 使用sharepoint里Open with explorer功能
使用这个功能时,遇到几个问题: 1. 当点击library时,ie报错:A problem with this webpage caused Internet Explorer to close an ...
- 【转】STC51单片机下载程序的时候不要在VCC端接DHT11
今天使用51单片机学习板调试DHT11湿度传感器,下载程序的时候把DHT11烧掉了. 一开始我使用杜邦线把DHT11的VCC引脚接到学习板上的VCC端,GND接GND,数据端口接51单片机的P0.0. ...
- MySql 主辅-一主多辅
MySql 主辅-一主多辅mysql tar源码包安装 骤及过程,以供参考 系统是centos6.x .注意:此安装是默认CentOS下已经安装了最新工具包,比如GNU make, GCC, Perl ...
- 【bzoj1565】 NOI2009—植物大战僵尸
http://www.lydsy.com/JudgeOnline/problem.php?id=1565 (题目链接) 题意 给出$n*m$的棋盘,僵尸攻击每个格子可以获得$v$的分数,每个格子又会保 ...
- HDU 1074 Doing Homework (动态规划,位运算)
HDU 1074 Doing Homework (动态规划,位运算) Description Ignatius has just come back school from the 30th ACM/ ...