luogu P1979 [NOIP2013] 华容道
这道题中,棋子的移动是要移动到空格上去,所以空格要在棋子旁边才能移动棋子;而棋子移动的方向由空格决定
所以我们可以记三维状态\(di_{i,j,k}\),表示状态为棋子在\((i,j)\),空格在棋子\(k\)方向(顺时针编号0到3)上的最短距离
要\(bfs\)预处理\(mv_{i,j,k,l}\),表示不动\((i,j)\),把空格从\(k\)方向移到\(l\)方向的最短距离.转移时枚举棋子要走的方向\(l\),然后要把空格移到棋子\(l\)方向,再让棋子走上去,注意走完后空格会在棋子的\((l+2)\ mod\ 4\)方向,所以\(di_{i1,j1,(l+2)\ mod\ 4}=di_{i,j,k}+mv_{i,j,k,l}+1\)
转移的话推荐用\(spfa\)(我\(spfa\)还活着,,,_ (: 」∠) _)等最短路算法
还有处理初始状态时,要把空格先移动到棋子对应方向上
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define inf 1061109567
using namespace std;
const int N=40,M=20000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int to[M<<1],nt[M<<1],w[M<<1],hd[M],tot=1;
il void add(int x,int y,int z){++tot,to[tot]=y,nt[tot]=hd[x],w[tot]=z,hd[x]=tot;}
int mm[4][2]={{0,1},{1,0},{0,-1},{-1,0}};
int n,m,q,a[N][N],nxt[4]={2,3,0,1}; //nxt[i]=(i+2)%4
int mv[N][N][4][4];
int id[N][N][4],di[M];
int vis[N][N],ti;
bool v[M];
struct nnn
{
int sx,sy,f,d;
};
int gdis(int x,int y,int tx,int ty,int d)
{
vis[x][y]=ti;
queue<nnn> q;
q.push((nnn){x,y,0,0});
while(!q.empty())
{
x=q.front().sx,y=q.front().sy,d=q.front().d;
q.pop();
if(x==tx&&y==ty) return d;
for(int j=0;j<4;j++)
{
int xx=x+mm[j][0],yy=y+mm[j][1];
if(vis[xx][yy]<ti&&a[xx][yy]) vis[xx][yy]=ti,q.push((nnn){xx,yy,0,d+1});
}
}
return inf;
}
int main()
{
n=rd(),m=rd(),q=rd();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int k=0;k<4;k++)
id[i][j][k]=(((i-1)*m+j)<<2)+k;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
a[i][j]=rd();
memset(mv,63,sizeof(mv));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(!a[i][j]) continue;
for(int k=0;k<4;k++)
{
if(!a[i+mm[k][0]][j+mm[k][1]]) continue;
for(int l=0;l<4;l++)
{
if(!a[i+mm[l][0]][j+mm[l][1]]) continue;
if(k==l) {mv[i][j][k][l]=0;continue;}
a[i][j]=0,++ti,mv[i][j][k][l]=gdis(i+mm[k][0],j+mm[k][1],i+mm[l][0],j+mm[l][1],0),a[i][j]=1;
}
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int k=0;k<4;k++)
for(int l=0;l<4;l++)
add(id[i][j][k],id[i+mm[l][0]][j+mm[l][1]][nxt[l]],mv[i][j][k][l]+1);
while(q--)
{
int ex=rd(),ey=rd(),sx=rd(),sy=rd(),tx=rd(),ty=rd();
if(sx==tx&&sy==ty) {puts("0");continue;}
memset(di,63,sizeof(di));
queue<int> q;
a[sx][sy]=0;
for(int j=0;j<4;j++) ++ti,di[id[sx][sy][j]]=gdis(ex,ey,sx+mm[j][0],sy+mm[j][1],0),q.push(id[sx][sy][j]);
a[sx][sy]=1;
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(di[y]>di[x]+w[i])
{
di[y]=di[x]+w[i];
if(!v[y]) q.push(y);
v[y]=true;
}
}
v[x]=false;
}
int ans=min(min(di[id[tx][ty][0]],di[id[tx][ty][1]]),min(di[id[tx][ty][2]],di[id[tx][ty][3]]));
printf("%d\n",ans<inf?ans:-1);
}
return 0;
}
luogu P1979 [NOIP2013] 华容道的更多相关文章
- Luogu 1979 [NOIP2013] 华容道
要优先安排历年NOIP题 考虑到要移动,肯定要先把空的格子移动到起点旁边,所以我们对于每一个询问都先bfs一次求出把空格移到起点的四个位置的最短路,而且要保证不能移动起点的方块. 只有空的格子在一个格 ...
- Luogu 1970 NOIP2013 花匠 (贪心)
Luogu 1970 NOIP2013 花匠 (贪心) Description 花匠栋栋种了一排花,每株花都有自己的高度.花儿越长越大,也越来越挤.栋栋决定把这排中的一部分花移走,将剩下的留在原地,使 ...
- [Luogu 1967] NOIP2013 货车运输
[Luogu 1967] NOIP2013 货车运输 一年多前令我十分头大的老题终于可以随手切掉了- 然而我这码风又变毒瘤了,我也很绝望. 看着一年前不带类不加空格不空行的清纯码风啊,时光也好像回去了 ...
- LOJ2613 NOIP2013 华容道 【最短路】*
LOJ2613 NOIP2013 华容道 LINK 这是个好题,具体题意比较麻烦可以直接看LINK中的链接 然后考虑我们可能的移动方式 首先我们需要把白块移动到需要移动块S的附近(附近四格) 然后我们 ...
- [NOIP2013]华容道 题解(搜索)
[NOIP2013]华容道 [题目描述] 这道题根据小时候玩华容道不靠谱的经验还以为是并查集,果断扑街.考后想想也是,数据这么小一定有他的道理. 首先由于是最小步数,所以BFS没跑了.那么我们大可把这 ...
- [NOIP2013]华容道 题解
[NOIP2013]华容道 首先是一种比较显然的做法. 整个棋盘,除了起点,终点和空格,其他的方块是等价的. 对于终点,它始终不会变化,如果搜到终点结束搜索即可,所以我们不需要考虑终点. 所以需要考虑 ...
- Luogu P1979 华容道(bfs+最短路)
P1979 华容道 题意 题目描述 小B最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面,华容道是否根本就无法完成,如果能完成, 最少需要多少时间. ...
- 洛谷P1979 [NOIP2013提高组Day2T3]华容道
P1979 华容道 题目描述 [问题描述] 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少 ...
- luogu P1979 华容道
solution 被假hash可了半天....sadQAQ code // luogu-judger-enable-o2 #include<queue> #include<cstdi ...
随机推荐
- ajax 调用 java webapi 多个参数(一)
最近开发 java webapi. 遇到一个问题,如果是多个参数(其中包含对象类型),我应该怎么传递? 一 先看解决方案: ajax <script> var data={ " ...
- day11 filter函数
场景模拟:我想判断某个列表里面的某个元素怎么怎么样 基础方法,如果需要判断多次则重复代码 ret = [] move_peole = ["alex","sb_wupeiq ...
- python构建bp神经网络_曲线拟合(一个隐藏层)__1.可视化数据
1.将数据写入csv文件,应该可以python代码直接实现数据集的写入,但我对文件读取这块不太熟练,等我成功了再加上,这里我直接手写将数据集写入Excel 2.然后把后缀改成.csv就可以了,利用pa ...
- MT【228】整数解的个数
求方程$x+y+z=24$的整数解的个数,要求$1\le x\le 5,12\le y\le 18,-1\le z\le12$ 解:设$a_r$是方程$X+Y+Z=r$的满足上述要求的整数解的个数,那 ...
- JDK源码分析(6)ConcurrentHashMap
JDK版本 ConcurrentHashMap源码分析 table:默认为null,初始化发生在第一次插入操作,默认大小为16的数组,用来存储Node节点数据,扩容时大小总是2的幂次方. nextTa ...
- unity开源移动库iTween使用完整Demo
public Vector3[] paths; // Use this for initialization void Start () { paths = ] { , , ), , , -) }; ...
- Windows Boot Manager改成中文菜单
用管理员身份运行"命令提示符",依次执行以下命令 bcdedit /deletevalue {bootmgr} device bcdedit /deletevalue {bootm ...
- 总算知道怎样从ImageMagick生成的数据转换成HICON: MagickGetImageBlob & LookupIconIdFromDirectoryEx
MagickSetImageFormat(mw, "ICO"); //设置这个后, MagickGetImageBlob 才能返回正确的值 size_t length; PBYTE ...
- 支持向量机(SVM)的推导(线性SVM、软间隔SVM、Kernel Trick)
线性可分支持向量机 给定线性可分的训练数据集,通过间隔最大化或等价地求解相应的凸二次规划问题学习到的分离超平面为 \[w^{\ast }x+b^{\ast }=0\] 以及相应的决策函数 \[f\le ...
- springboot静态资源处理
转:https://blog.csdn.net/catoop/article/details/50501706 Spring Boot 默认为我们提供了静态资源处理,使用 WebMvcAutoConf ...