正解:状压dp

解题报告:

看到是四川省选的时候我心里慌得一批TT然后看到难度之后放下心来觉得大概没有那么难

事实证明我还是too young too simple了QAQ难到爆炸TT我本来还想刚一道紫题搞完这个之后就佛了不做了TT

不扯淡了太太太浪费时间辣

好那直接港

首先我想到的就觉得大概是和那个奶牛玉米田的没有太大区别改一改就能ac!

然后我就先照着玉米田做完,发现过不了样例

于是改,改了半小时,好像差不多了,因为要存储放了几个国王巴拉巴拉的

还是没过样例,输出下过程,发现是上一种状态有很多种放国王的数量,又改改改改改

然后改到下课也没改完,心态爆炸,决定不做了第二天做

然后今天我又改了差不多半小时,总算ac了……开了两个三维数组三四个二维数组……太麻烦了TT

好的抱怨完了直接放程序吧quq

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define rp(i,x,y) for(ll i=x;i<=y;i++)
ll zt[<<],cnt,num[<<],f[][<<][],cc[][<<][<<],ans=;][][<<];
//我jio得解释下这里其他就没有太多要港的辣?
//zt:合法状态
//cnt:有几个合法状态
//num:这个状态下放了几个国王
//f[i][j][k]:到第k行本层状态为j共计放了i个国王了的 合法方案数
//cc[i][j][k]:第i行状态为j时第k种可能的放了国王的数量 0存的是有几种可能的数量
//t[i][j][k]:就是个桶,是为了避免cc中存入重复的数量 意为:在第j行状态为k时数量为i是否存储过,若存储过自然不用处理,没有的话是要cc[0]++的嘛
//ans:就是最后的统计,明白吧?
//好的解释完了!那我觉得后面就没有那——么难理解辣!
ll read()
{
    ;;
    '))ch=getchar();
    ,ch=getchar();
    )+(x<<)+(ch^'),ch=getchar();
    return y?x:-x;
}
int cl(ll x)
{
    ;
    )
    {
        )t++;
        x>>=;
    }
    return t;
}
int main()
{
    ll n=read(),m=read();
    rp(i,,(<<n)-)
        ))==) && ((i&(i>>))==))zt[++cnt]=i,num[cnt]=cl(i),cc[][i][]=,cc[][i][]=num[cnt];//预处理 自己看不难理解
    rp(i,,cnt)f[num[i]][zt[i]][]=;//第一行要特殊处理
    rp(i,,n)
        rp(j,,cnt)
            rp(k,,cnt)
                ) && ((zt[j]&(zt[k]<<))==) && ((zt[j]&(zt[k]>>))==))//j为本行k为上一行状态
                    rp(q,,cc[i-][zt[k]][])//cc[balabala][balabala][q]枚举上一行状态为ztk时能放到的国王状态
                        ][zt[k]][q]+num[j]<=m)
                        {
                            f[cc[i-][zt[k]][q]+num[j]][zt[j]][i]+=f[cc[i-][zt[k]][q]][zt[k]][i-];//转移
                            ][zt[k]][q]+num[j]][i][zt[j]]==)//判断是否要加入cc0里面
                            {
                                cc[i][zt[j]][]++;
                                t[cc[i-][zt[k]][q]+num[j]][i][zt[j]]=;
                                cc[i][zt[j]][cc[i][zt[j]][]]=cc[i-][zt[k]][q]+num[j];
                            }
                        }
    rp(i,,cnt)ans+=f[m][zt[i]][n];
    printf("%lld",ans);
    ;
}
//完美结束yeah!

点我♂看♂灵巧在线wa题QAQ

哇我难得写这么多注释!不容易!好的那搞完了就去刚今天考试题目了TT

哎我太苦了好不容易逃脱状压dp又要进入考试题的深渊QAQ

P1896 [SCOI2005]互不侵犯 状压dp的更多相关文章

  1. BZOJ1087[SCOI2005]互不侵犯——状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...

  2. SCOI2005 互不侵犯 [状压dp]

    题目传送门 题目大意:有n*n个格子,你需要放置k个国王使得它们无法互相攻击,每个国王的攻击范围为上下左走,左上右上左下右下,共8个格子,求最多的方法数 看到题目,是不是一下子就想到了玉米田那道题,如 ...

  3. [SCOI2005]互不侵犯 (状压$dp$)

    题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 位国王,且最后一位状态为 \(k\) . 然后就可以很轻松的转移了 ...

  4. luogu1896 [SCOI2005]互不侵犯 状压DP

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.( 1 <=N <=9, 0 ...

  5. NOI P1896 互不侵犯 状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  6. 洛谷——P1896 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...

  7. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

  8. 洛谷P1896 [SCOI2005]互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  9. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

随机推荐

  1. Android美丽的对话框项目sweet-alert-dialog

    美丽的对话框 sweet-alert-dialog 项目地址: https://github.com/pedant/sweet-alert-dialog android原生的dialog太生硬了,之前 ...

  2. linux下Ftp服务安装

    安装vsftp 使用yum命令安装vsftp #yum install vsftpd -y 如果yum安装不成功,可以到 http://pkgs.org/centos-6/centos-x86_64/ ...

  3. make INSTALL_MOD_PATH=path_dir modules_install

    The INSTALL_MOD_PATH variable is needed to install the modules in the target root filesystem instead ...

  4. MySQL常见错误码及说明

    1005:创建表失败1006:创建数据库失败1007:数据库已存在,创建数据库失败<=================可以忽略1008:数据库不存在,删除数据库失败<=========== ...

  5. Android文档-开发者指南-第一部分:入门-中英文对照版

    发布的博客,排版太不行了,整理下发在百度盘上了: 第一部分:Introduction(入门) 0.Introduction to Android(引进到Android) 1.Application F ...

  6. ThreadLocal 那点事儿(续集)

    本篇是<ThreadLocal 那点事儿>的续集,如果您没看上一篇,就就有点亏了.如果您错过了这一篇,那亏得就更大了. 还是保持我一贯的 Style,用一个 Demo 来说话吧.用户提出一 ...

  7. Python实现Linux命令xxd -i功能

    目录 Python实现Linux命令xxd -i功能 声明 一. Linux xxd -i功能 二. xxd -i常见用途 三. 类xxd -i功能的Python实现 Python实现Linux命令x ...

  8. css3整理--transition

    transition语法: transition : [<'transition-property'> || <'transition-duration'> || <'t ...

  9. Pro ASP.NET MVC –第三章 MVC模式

    在第七章,我们将创建一个更复杂的ASP.NET MVC示例,但在那之前,我们会深入ASP.NET MVC框架的细节:我们希望你能熟悉MVC设计模式,并且考虑为什么这样设计.在本章,我们将讨论下列内容 ...

  10. struts2,spring,ibatis学习

    1.1 什么是struts2? MVC思想给网站设计带来了巨大的好处,但是MVC毕竟只是一种思想,不同的程序员写出来的基于MVC思想的应用,风格可能不一样.影响程序的标准化,Struts是为了规范MV ...