奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
      这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。

原图及数学公式取自:

http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。

脚本代码:

[ScriptLines]
u=j
v=-i+j*k
w=a-j*j
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=1.500000
i=1.000000
j=1.000000
k=1.000000
t=0.000500

混沌图像:

奇怪吸引子---NoseHoover的更多相关文章

  1. 奇怪吸引子---YuWang

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  2. 奇怪吸引子---WimolBanlue

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  3. 奇怪吸引子---WangSun

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  4. 奇怪吸引子---TreeScrollUnifiedChaoticSystem

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  5. 奇怪吸引子---Thomas

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  6. 奇怪吸引子---ShimizuMorioka

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  7. 奇怪吸引子---Sakarya

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  8. 奇怪吸引子---Russler

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  9. 奇怪吸引子---Rucklidge

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

随机推荐

  1. raindi python魔法函数(一)之__repr__与__str__

    __repr__和__str__都是python中的特殊方法,都是用来输出实例对象的,如果没有定义这两个方法在打印的时候只会输出实例所在的内存地址 这种方式的输出没有可读性,并不能直观的体现实例.py ...

  2. Jmeter安装和启动和使用

    一.安装配置JDK 1.下载安装jdk,地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 2.配置JDK环境变 ...

  3. pytest七:assert

    断言是写自动化测试基本最重要的一步,一个用例没有断言,就失去了自动化测试的意义了.什么是断言呢?简单来讲就是实际结果和期望结果去对比,符合预期那就测试 pass,不符合预期那就测试 failed py ...

  4. vue组件库(五):icon管理

    图标管理 前言 一.常用图标库网站 1.http://icomoon.io 阿里巴巴矢量图 身边的 2.http://fontawesome.dashgame.com iconmoon 3.http: ...

  5. [转] Sublime Text3 配置 NodeJs 环境

    前言 大家都知道,Sublime Text 安装插件一般从 Package Control 中直接安装即可,当我安装 node js 插件时候,直接通过Package Control 安装,虽然插件安 ...

  6. 手动卸载Office2010

    手动卸载Office2010视频 http://v.youku.com/v_show/id_XNTE3MTMwNDUy.html 其中遇到Application Data文件夹打不开 http://z ...

  7. optional

    public class Test { public static void main(String[] args) { People people = new People(); Optional& ...

  8. 【转载】和 Thrift 的一场美丽邂逅

    http://www.cnblogs.com/cyfonly/p/6059374.html 一. 与 Thrift 的初识 也许大多数人接触 Thrift 是从序列化开始的.每次搜索 “java序列化 ...

  9. BZOJ1966 [Ahoi2005]VIRUS 病毒检测 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1966 题意概括 现在有一些串和一个病毒模板.让你统计非病毒串的总数.串个数<=500. 串由 ...

  10. Win10 下 hadoop3.0.0 单机部署

    前言 因近期要做 hadoop 有关的项目,需配置 hadoop 环境,简单起见就准备进行单机部署,方便开发调试.顺便记录下采坑步骤,方便碰到同样问题的朋友们. 安装步骤 一.下载 hadoop-XX ...