Tf中的NCE-loss实现学习【转载】
转自:http://www.jianshu.com/p/fab82fa53e16
1.tf中的nce_loss的API
def nce_loss(weights, biases, inputs, labels, num_sampled, num_classes,
num_true=1,
sampled_values=None,
remove_accidental_hits=False,
partition_strategy="mod",
name="nce_loss")
假设nce_loss之前的输入数据是K维的,一共有N个类,那么
- weight.shape = (N, K)
- bias.shape = (N)
- inputs.shape = (batch_size, K)
- labels.shape = (batch_size, num_true)
- num_true : 实际的正样本个数
- num_sampled: 采样出多少个负样本
- num_classes = N
- sampled_values: 采样出的负样本,如果是None,就会用不同的sampler去采样。待会儿说sampler是什么。
- remove_accidental_hits: 如果采样时不小心采样到的负样本刚好是正样本,要不要干掉
- partition_strategy:对weights进行embedding_lookup时并行查表时的策略。TF的embeding_lookup是在CPU里实现的,这里需要考虑多线程查表时的锁的问题。
nce_loss的实现逻辑如下:
- _compute_sampled_logits: 通过这个函数计算出正样本和采样出的负样本对应的output和label
- sigmoid_cross_entropy_with_logits: 通过 sigmoid cross entropy来计算output和label的loss,从而进行反向传播。这个函数把最后的问题转化为了num_sampled+num_real个两类分类问题,然后每个分类问题用了交叉熵的损伤函数,也就是logistic regression常用的损失函数。TF里还提供了一个softmax_cross_entropy_with_logits的函数,和这个有所区别。
2.tf中word2vec实现
loss = tf.reduce_mean(
tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels,
num_sampled, vocabulary_size))
它这里并没有传sampled_values,那么它的负样本是怎么得到的呢?继续看nce_loss的实现,可以看到里面处理sampled_values=None的代码如下:
if sampled_values is None:
sampled_values = candidate_sampling_ops.log_uniform_candidate_sampler(
true_classes=labels,
num_true=num_true,
num_sampled=num_sampled,
unique=True,
range_max=num_classes)
所以,默认情况下,他会用log_uniform_candidate_sampler去采样。那么log_uniform_candidate_sampler是怎么采样的呢?他的实现在这里:
- 他会在[0, range_max)中采样出一个整数k
- P(k) = (log(k + 2) - log(k + 1)) / log(range_max + 1)
可以看到,k越大,被采样到的概率越小。那么在TF的word2vec里,类别的编号有什么含义吗?看下面的代码:
def build_dataset(words):
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
count[0][1] = unk_count
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary
Tf中的NCE-loss实现学习【转载】的更多相关文章
- tf中的run()与eval()【转载】
转自:https://blog.csdn.net/jiaoyangwm/article/details/79248535 1.eval() 其实就是tf.Tensor的Session.run() 的 ...
- tf中计算图 执行流程学习【转载】
转自:https://blog.csdn.net/dcrmg/article/details/79028003 https://blog.csdn.net/qian99/article/details ...
- Java多线程学习(转载)
Java多线程学习(转载) 时间:2015-03-14 13:53:14 阅读:137413 评论:4 收藏:3 [点我收藏+] 转载 :http://blog ...
- 项目中使用Quartz集群分享--转载
项目中使用Quartz集群分享--转载 在公司分享了Quartz,发布出来,希望大家讨论补充. CRM使用Quartz集群分享 一:CRM对定时任务的依赖与问题 二:什么是quartz,如何使用, ...
- 浅谈Java中的深拷贝和浅拷贝(转载)
浅谈Java中的深拷贝和浅拷贝(转载) 原文链接: http://blog.csdn.net/tounaobun/article/details/8491392 假如说你想复制一个简单变量.很简单: ...
- ArcGIS中的坐标系定义与转换 (转载)
原文:ArcGIS中的坐标系定义与转换 (转载) 1.基准面概念: GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐 ...
- 如何设置Win7系统中的上帝模式GodMode(转载)
如何设置Win7系统中的上帝模式GodMode(转载) NT6系统中隐藏了一个秘密的“GodMode”,字面上译为“上帝模式”.God Mode其实就是一个简单的文件夹窗口,但包含了几乎所有系统的设置 ...
- TF中conv2d和kernel_initializer方法
conv2d中的padding 在使用TF搭建CNN的过程中,卷积的操作如下 convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], pad ...
- (原)关于MEPG-2中的TS流数据格式学习
关于MEPG-2中的TS流数据格式学习 Author:lihaiping1603 原创:http://www.cnblogs.com/lihaiping/p/8572997.html 本文主要记录了, ...
随机推荐
- Unity Shader 景深效果
效果 原理: 开启摄像机的深度模式,将深度保存到一张名为_CameraDepthTexture(Unity5.0之后才有)内置的纹理中. 如果深度在焦点范围内就用原图,否则就用模糊图. Shader: ...
- 7.13python多进程
所以引入了 多进程*(异步) 处理效率高 #!/usr/bin/env python #!--*--coding:utf-8 --*-- #!@Time :2018/7/13 19:26 #! ...
- day_6.9py网络编程
.路由器:能够链接不同的网络使他们之间能够通信 mac就是手拉手传输数据用的
- apache 二级域名设置完整步骤
步骤如下: 1. 你要拥有一个有泛域名解析的顶级域名,例如:abc.com 在dns服务上设置,域名服务商都提供此服务 www.abc.com 指向服务器IPabc.com ...
- python 中面向对象的概念
原文 域和作用空间 本地域,函数域(nonlocal)和 全局域(global) def scope_test(): def do_local(): spam = "local spam&q ...
- Diagnostics: File file:/tmp/spark-***/__spark_libs__***.zip does not exist
Diagnostics: File file:/tmp/spark-c03df206-c90e-4c97-a2d6-a5d3fdb17811/__spark_libs__303213348409500 ...
- Python不支持函数重载
函数重载与Python: 函数重载的好处就是不用为了不同的参数类型或参数个数,而写多个函数.多个函数用同一个名字,但参数表,即参数的个数和数据类型可以不同.调用的时候,虽然方法名字相同,但根据参数表可 ...
- vue项目打包后一片空白及资源引入的路径报错解决办法
网上很多说自己的VUE项目通过Webpack打包生成的list文件,放到HBulider打包后,通过手机打开一片空白.这个主要原因是路径的问题. 1.记得改一下config下面的index.js中bu ...
- Steeltoe之Config客户端篇
Steeltoe是一款开源项目,其目标是选取源自Netflix及其它公司的工具,使它们能够运用于.NET社区.它不仅可以在.NET Core上,也可以在.NET Framework 4.X以上使用.此 ...
- dma传输数据长度,在启动前必须确保是一个大于0的数字
否则将导致不能接受数据