Description

给出了一个序列,你需要处理如下两种询问。

"C a b c"表示给[a, b]区间中的值全部增加c (-10000 ≤ c ≤ 10000)。

"Q a b" 询问[a, b]区间中所有值的和。

Input

第一行包含两个整数N, Q。1 ≤ N,Q ≤ 100000.

第二行包含n个整数,表示初始的序列A (-1000000000 ≤ Ai ≤ 1000000000)。

接下来Q行询问,格式如题目描述。

Output

对于每一个Q开头的询问,你需要输出相应的答案,每个答案一行。

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15 这个题搞了不少时间,主要是难懂,而且写代码稍微快一点就 各种错误,吓得我不敢写快了,以后还是要多多细心才行。 这道题用开始那种线段树已经不行了,必须想出效率更高的方法,于是延迟标记出来了,用sign数组表示,它主要用于记录目前更新或者查询到的节点,并且它很懒,不更新未到节点,直到某次查询或者更新到标记的节点的子节点时
这个时候就把当前节点更新了,去掉节点标记时需要把子节点标记。 此次代码重点:区间更新,延迟标记
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
using namespace std; #define INF 0x3f3f3f3f
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1 const int MX = 100050;
long long sum[MX<<2];
long long sign[MX<<2];
int T, n, Q, X, Y;
long long Z; void PushUp(int rt) {
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void PushDown(int rt, int len) {
if (sign[rt]) {
sign[rt<<1] += sign[rt];
sign[rt<<1|1] += sign[rt];
sum[rt<<1] += (len - (len>>1)) * sign[rt];//为了解决奇数所带来的子节点分配不平衡问题,因此需要这样做
sum[rt<<1|1] += (len>>1) * sign[rt];
sign[rt] = 0;
}
}
void Build(int l, int r, int rt) {
sign[rt] = 0;//初始化标记
if (l == r) {
scanf("%lld", &sum[rt]);
return ;
}
int m = (l + r)>>1;
Build(lson);
Build(rson);
PushUp(rt);
}
void Update(int L, int R, long long z, int l, int r, int rt) {
if (L <= l && r <= R) {
sign[rt] += z;//记录下更新的值
sum[rt] += z * (r - l + 1);//批量更新
return ;
}
PushDown(rt, r - l + 1);//检查标记,看是否需要继续向下更新
int m = (l + r)>>1;
if (L <= m) Update(L, R, z, lson);
if (R > m) Update(L, R, z, rson);
PushUp(rt);
}
long long Query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
PushDown(rt, r - l + 1);//别忘了查询时也要注意标记是否存在
int m = (l + r)>>1;
long long ret = 0;
if (L <= m) ret += Query(L, R, lson);
if (R > m) ret += Query(L, R, rson);
return ret;
}
int main() {
//freopen("input.txt", "r", stdin);
while (scanf("%d %d\n", &n, &Q) != EOF) {
Build(1, n, 1);
while (Q--) {
char op[2];
scanf("%s", op);
if (op[0] == 'Q') {
scanf("%d %d", &X, &Y);
long long ans = Query(X, Y, 1, n, 1);
printf("%lld\n", ans);
} else {
scanf("%d %d %lld", &X, &Y, &Z);
Update(X, Y, Z, 1, n, 1);
}
}
}
return 0;
}

POJ-A Simple Problem with Integers的更多相关文章

  1. Poj 3468-A Simple Problem with Integers 线段树,树状数组

    题目:http://poj.org/problem?id=3468   A Simple Problem with Integers Time Limit: 5000MS   Memory Limit ...

  2. POJ A Simple Problem with Integers 线段树 lazy-target 区间跟新

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 105742 ...

  3. POJ 3468A Simple Problem with Integers(线段树区间更新)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 112228 ...

  4. POJ - 3468A Simple Problem with Integers (线段树区间更新,区间查询和)

    You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of op ...

  5. poj 3468A Simple Problem with Integers

    Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...

  6. POJ A Simple Problem with Integers | 线段树基础练习

    #include<cstdio> #include<algorithm> #include<cstring> typedef long long ll; #defi ...

  7. POJ 3468_A Simple Problem with Integers(树状数组)

    完全不知道该怎么用,看书稍微懂了点. 题意: 给定序列及操作,求区间和. 分析: 树状数组可以高效的求出连续一段元素之和或更新单个元素的值.但是无法高效的给某一个区间的所有元素同时加个值. 不能直接用 ...

  8. POJ 3468_A Simple Problem with Integers(线段树)

    题意: 给定序列及操作,求区间和. 分析: 线段树,每个节点维护两个数据: 该区间每个元素所加的值 该区间元素和 可以分为"路过"该区间和"完全覆盖"该区间考虑 ...

  9. poj 3468:A Simple Problem with Integers(线段树,区间修改求和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 58269   ...

  10. poj 3468 A Simple Problem with Integers 线段树第一次 + 讲解

    A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal w ...

随机推荐

  1. DOM – (w3school)1.DOM 方法 + 2.DOM属性 + 3.DOM 元素

      1.DOM 方法   一些 DOM 对象方法 这里提供一些您将在本教程中学到的常用方法: 方法 描述 getElementById() 返回带有指定 ID 的元素. getElementsByTa ...

  2. 在ubuntu上搭建开发环境7---ubuntu安装JDK

    首先,当然是要下载了. 地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html 按 ...

  3. Yii 同域名的单点登录 SSO实现

    SSO (Single Sign-on) 顾名思义就是几个子项目共用一个登录点. 原理简单来说就是服务端session 共享, 客户端跨域cookies. 实现非常简单,protected/confi ...

  4. poj 2262【素数表的应用---判断素数】【哈希】

    Goldbach's Conjecture Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35214   Accepted: ...

  5. jQuery函数attr()和prop()的区别

    在jQuery中,attr()函数和prop()函数都用于设置或获取指定的属性,它们的参数和用法也几乎完全相同. 但不得不说的是,这两个函数的用处却并不相同.下面我们来详细介绍这两个函数之间的区别. ...

  6. html5 方框内的小球

    html5 方框内的小球 版本一 <!DOCTYPE html> <html> <head lang="en"> <meta charse ...

  7. jQuery实现长按按钮触发事件的方法

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. 为什么没有选择sipml5

    转自:http://www.myvoipapp.com/blogs/yxh/2015/01/23/%E4%B8%BA%E4%BB%80%E4%B9%88%E6%B2%A1%E6%9C%89%E9%80 ...

  9. 在Salesforce中通过dataloadercliq调用data loader来批量处理数据

    上一篇文章讲到,通过data loader去批量处理数据,那么这篇文章将主要讲解在Salesforce中通过dataloadercliq调用data loader来批量处理数据. 1): CLIq文件 ...

  10. 智能车学习(十七)——舵机学习

    一.舵机的结构      舵机简单的说就是集成了直流电机.电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元.能够利用简单的输入信号比较精确的转动给定角度的电机系统.舵机安装了一个电位器(或 ...