使用python接口来运行caffe程序,主要的原因是python非常容易可视化。所以不推荐大家在命令行下面运行python程序。如果非要在命令行下面运行,还不如直接用 c++算了。

推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来。

因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与matlab界面类似的一款编辑器,在运行过程中,可以查看各变量的值,便于理解,如下图:

只要安装了anaconda,运行方式也非常方便,直接在终端输入spyder命令就可以了。

在caffe的训练过程中,我们如果想知道某个阶段的loss值和accuracy值,并用图表画出来,用python接口就对了。

# -*- coding: utf-8 -*-
"""
Created on Tue Jul 19 16:22:22 2016 @author: root
""" import matplotlib.pyplot as plt
import caffe
caffe.set_device(0)
caffe.set_mode_gpu()
# 使用SGDSolver,即随机梯度下降算法
solver = caffe.SGDSolver('/home/xxx/mnist/solver.prototxt') # 等价于solver文件中的max_iter,即最大解算次数
niter = 9380
# 每隔100次收集一次数据
display= 100 # 每次测试进行100次解算,10000/100
test_iter = 100
# 每500次训练进行一次测试(100次解算),60000/64
test_interval =938 #初始化
train_loss = zeros(ceil(niter * 1.0 / display))
test_loss = zeros(ceil(niter * 1.0 / test_interval))
test_acc = zeros(ceil(niter * 1.0 / test_interval)) # iteration 0,不计入
solver.step(1) # 辅助变量
_train_loss = 0; _test_loss = 0; _accuracy = 0
# 进行解算
for it in range(niter):
# 进行一次解算
solver.step(1)
# 每迭代一次,训练batch_size张图片
_train_loss += solver.net.blobs['SoftmaxWithLoss1'].data
if it % display == 0:
# 计算平均train loss
train_loss[it // display] = _train_loss / display
_train_loss = 0 if it % test_interval == 0:
for test_it in range(test_iter):
# 进行一次测试
solver.test_nets[0].forward()
# 计算test loss
_test_loss += solver.test_nets[0].blobs['SoftmaxWithLoss1'].data
# 计算test accuracy
_accuracy += solver.test_nets[0].blobs['Accuracy1'].data
# 计算平均test loss
test_loss[it / test_interval] = _test_loss / test_iter
# 计算平均test accuracy
test_acc[it / test_interval] = _accuracy / test_iter
_test_loss = 0
_accuracy = 0 # 绘制train loss、test loss和accuracy曲线
print '\nplot the train loss and test accuracy\n'
_, ax1 = plt.subplots()
ax2 = ax1.twinx() # train loss -> 绿色
ax1.plot(display * arange(len(train_loss)), train_loss, 'g')
# test loss -> 黄色
ax1.plot(test_interval * arange(len(test_loss)), test_loss, 'y')
# test accuracy -> 红色
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r') ax1.set_xlabel('iteration')
ax1.set_ylabel('loss')
ax2.set_ylabel('accuracy')
plt.show()

最后生成的图表在上图中已经显示出来了。

caffe的python接口学习(7):绘制loss和accuracy曲线的更多相关文章

  1. Caffe---Pycaffe 绘制loss和accuracy曲线

    Caffe---Pycaffe 绘制loss和accuracy曲线 <Caffe自带工具包---绘制loss和accuracy曲线>:可以看出使用caffe自带的工具包绘制loss曲线和a ...

  2. Caffe---自带工具 绘制loss和accuracy曲线

    Caffe自带工具包---绘制loss和accuracy曲线 为什么要绘制loss和accuracy曲线?在训练过程中画出accuracy 和loss曲线能够更直观的观察网络训练的状态,以便更好的优化 ...

  3. caffe的python接口学习(1):生成配置文件

    caffe是C++语言写的,可能很多人不太熟悉,因此想用更简单的脚本语言来实现.caffe提供matlab接口和python接口,这两种语言就非常简单,而且非常容易进行可视化,使得学习更加快速,理解更 ...

  4. Caffe学习系列(19): 绘制loss和accuracy曲线

    如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制. // In [1]: #加载必要的库 import numpy as np import matplotlib.py ...

  5. caffe的python接口学习(4):mnist实例---手写数字识别

    深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 ...

  6. caffe的python接口学习(6)用训练好的模型caffemodel分类新图片

    经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...

  7. caffe的python接口学习(4)mnist实例手写数字识别

    以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧 一 数据准备 准备训练集和测试集图片的列表清单; 二 导入caffe库,设定文件路径 # -*- coding: utf-8 -*- im ...

  8. caffe的python接口学习(6):用训练好的模型(caffemodel)来分类新的图片

    经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...

  9. caffe的python接口学习(2):生成solver文件

    caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下: base_lr: 0.001 display: 782 gamma: 0.1 ...

随机推荐

  1. 懒加载session 无法打开 no session or session was closed 解决办法(完美解决)

           首先说明一下,hibernate的延迟加载特性(lazy).所谓的延迟加载就是当真正需要查询数据时才执行数据加载操作.因为hibernate当中支持实体对象,外键会与实体对象关联起来.如 ...

  2. TODO:Laravel 使用blade标签布局页面

    TODO:Laravel 使用blade标签布局页面 本文主要介绍Laravel的标签使用,统一布局页面.主要用到到标签有@yield,@ stack,@extends,@section,@stop, ...

  3. ajax异步请求

    做前端开发的朋友对于ajax异步更新一定印象深刻,作为刚入坑的小白,今天就和大家一起聊聊关于ajax异步请求的那点事.既然是ajax就少不了jQuery的知识,推荐大家访问www.w3school.c ...

  4. 逆天通用水印支持Winform,WPF,Web,WP,Win10。支持位置选择(9个位置 ==》[X])

    常用技能:http://www.cnblogs.com/dunitian/p/4822808.html#skill 逆天博客:http://dnt.dkil.net 逆天通用水印扩展篇~新增剪贴板系列 ...

  5. .NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍

    Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来.因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器 ...

  6. 来吧,HTML5之一些注意事项

    1.说什么是HTML HTML是一种超文本标记语言(Hyper Text Markup Language), 标记语言是一套标记标签(markup tag),用来描述网页的非编程语言. 2.标签特性: ...

  7. 趣说游戏AI开发:曼哈顿街角的A*算法

    0x00 前言 请叫我标题党!请叫我标题党!请叫我标题党!因为下面的文字既不发生在美国曼哈顿,也不是一个讲述美国梦的故事.相反,这可能只是一篇没有那么枯燥的关于算法的文章.A星算法,这个在游戏寻路开发 ...

  8. 使用python自动生成docker nginx反向代理配置

    由于在测试环境上用docker部署了多个应用,而且他们的端口有的相同,有的又不相同,数量也比较多,在使用jenkins发版本的时候,不好配置,于是想要写一个脚本,能在docker 容器创建.停止的时候 ...

  9. 为什么很多SaaS企业级产品都熬不过第一年

    因工作缘由,笔者与周边数位SaaS企业级应用的创始人.运营负责人有过深入接触,发现一个有趣的现象:刚起步时,蓝图远志.规划清晰,但是一路下来,却异常艰难,有些甚至熬不过第一年,就关门歇业. 2015年 ...

  10. Android Studio开发RecyclerView遇到的各种问题以及解决(二)

    开发RecyclerView时候需要导入别人的例子,我的是从github导入的,下载下github的压缩包之后解压看你要导入的文件是priject还是Module.(一般有app文件夹的大部分是pro ...