题目链接http://xcacm.hfut.edu.cn/problem.php?id=1103

题目大意:链更新。链查询,求树链的最大子段和。(子段可以为空)

解题思路

将所有Query离线存储,并且注明哪个是更新,哪个是查询。

Tarjan离线处理中,记录每个结点的前驱,p[v]=u。

若更新,从u点回溯到LCA,从v点回溯到LCA,逐个修改。

若查询,将u点回溯到LCA,LCA,v点回溯到LCA的倒序拼成一个序列,求最大子段和。

值得注意的是,子段和全为负值的时候,ans=max(0,ans),即不要任何插线板(原题意思不明)。

#include "cstdio"
#include "cstring"
#include "vector"
#include "algorithm"
using namespace std;
#define maxn 100005
#define inf 0x3f3f3f3f
int head[maxn],qhead[maxn],lag[maxn],kth[maxn],tot1,tot2,f[maxn],vis[maxn],ancestor[maxn],p[maxn],s1[maxn],s2[maxn];
bool isUpdate[maxn];
struct Edge
{
int to,next;
}e[maxn*];
struct Query
{
int from,to,next,idx,c;
}q[maxn*];
void addedge(int u,int v)
{
e[tot1].to=v;
e[tot1].next=head[u];
head[u]=tot1++;
}
void addquery(int u,int v,int idx,int c=inf)
{
q[tot2].from=u;
q[tot2].to=v;
q[tot2].next=qhead[u];
q[tot2].idx=idx;
if(c!=inf) q[tot2].c=c;
qhead[u]=tot2++;
}
int find(int x) {return x!=f[x]?f[x]=find(f[x]):x;}
void Union(int u,int v)
{
u=find(u),v=find(v);
if(u!=v) f[v]=u;
}
void LCA(int u)
{
vis[u]=true;
f[u]=u;
for(int i=head[u];i!=-;i=e[i].next)
{
int v=e[i].to;
if(!vis[v])
{
p[v]=u;
LCA(v);
Union(u,v);
}
}
for(int i=qhead[u];i!=-;i=q[i].next)
{
int v=q[i].to;
if(vis[v]) ancestor[q[i].idx]=find(v);
//or storage e[i].lca=e[i^1].lca=find(v)
}
}
int sum(int num)
{
s2[]=s1[];
int Max=s2[];
for(int i=; i<num; i++)
{
if(s2[i-]>) s2[i]=s2[i-]+s1[i];
else s2[i]=s1[i];
if(s2[i]>Max) Max=s2[i];
}
return max(,Max);
}
int main()
{
//freopen("in.txt","r",stdin);
int T,n,m,u,v,c,cmd,qcnt=;
scanf("%d",&n);
tot1=tot2=;
memset(head,-,sizeof(head));
memset(qhead,-,sizeof(qhead));
memset(vis,,sizeof(vis));
memset(isUpdate,,sizeof(isUpdate));
for(int i=;i<=n;i++) scanf("%d",&lag[i]);
for(int i=; i<n-; i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
scanf("%d",&m);
for(int i=; i<m; i++)
{
scanf("%d",&cmd);
if(cmd==)
{
scanf("%d%d%d",&u,&v,&c);
addquery(u,v,i,c);
addquery(v,u,i,c);
isUpdate[i]=true;
}
else
{
scanf("%d%d",&u,&v);
addquery(u,v,i);
addquery(v,u,i);
}
}
LCA();
vector<int> ans;
for(int i=; i<tot2; i=i+)
{
int u=q[i].from,v=q[i].to,idx=q[i].idx;
int ed=ancestor[idx],cnt=;
if(isUpdate[qcnt])
{
int c=q[i].c;
while(u!=ed) lag[u]=c,u=p[u];
lag[ed]=c;
while(v!=ed) lag[v]=c,v=p[v];
}
else
{
while(u!=ed) s1[cnt++]=lag[u],u=p[u];
s1[cnt++]=lag[ed];
vector<int> rev;
while(v!=ed) rev.push_back(lag[v]),v=p[v];
for(int j=rev.size()-; j>=; j--) s1[cnt++]=rev[j];
int x=sum(cnt);
ans.push_back(x);
}
qcnt++;
}
for(int i=;i<ans.size()-;i++) printf("%d ",ans[i]);
printf("%d\n",ans[ans.size()-]);
}

XCOJ 1103 (LCA+树链最大子段和)的更多相关文章

  1. Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式)

    Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式) 题外话,这是我第40篇随笔,纪念一下.<( ̄︶ ̄)↗[GO!] 题意 是说有棵树,每个节点上 ...

  2. [BZOJ3626] [LNOI2014]LCA(树链剖分)

    [BZOJ3626] [LNOI2014]LCA(树链剖分) 题面 给出一棵N个点的树,要求支持Q次询问,每次询问一个点z与编号为区间[l,r]内的点分别求最近公共祖先得到的最近公共祖先深度和.N, ...

  3. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  4. Codeforces Round #329 (Div. 2) D. Happy Tree Party LCA/树链剖分

    D. Happy Tree Party     Bogdan has a birthday today and mom gave him a tree consisting of n vertecie ...

  5. HDU 3078 (LCA+树链第K大)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3078 题目大意:定点修改.查询树中任意一条树链上,第K大值. 解题思路: 先用离线Tarjan把每个 ...

  6. BZOJ 3626: [LNOI2014]LCA( 树链剖分 + 离线 )

    说多了都是泪啊...调了这么久.. 离线可以搞 , 树链剖分就OK了... -------------------------------------------------------------- ...

  7. [CodeVS2370] 小机房的树 (LCA, 树链剖分, LCT)

    Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天,他们想爬到一个节点上去搞基,但是作为两只虫子,他们不想花 ...

  8. BZOJ3626[LNOI2014]LCA——树链剖分+线段树

    题目描述 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询 ...

  9. bzoj 3626 : [LNOI2014]LCA (树链剖分+线段树)

    Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q ...

随机推荐

  1. android中一个解决办法

    E  Trace(732): error opening trace file: No such file or directory (2)android api 的版本和模拟器的版本不一致导致的

  2. 20145206邹京儒《Java程序设计》第7周学习总结

    20145206 <Java程序设计>第7周学习总结 教材学习内容总结 第十三章 时间与日期 13.1.1 时间的度量 ·即使标注为GMT(格林威治时间),实际上谈到的的是UTC(Unix ...

  3. jq 轮播图

    <style> #focus{width:500px;height:200px;overflow:hidden;/*用一个div把图片包含设置超出范围隐藏*/} </style> ...

  4. (编辑器)Jquery-EasyUI集合Kindeditor编辑器

    1.在html里面添加 list.html list.html (function ($, K) { if (!K) throw "KindEditor未定义!"; functio ...

  5. js自定义延迟执行函数

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  6. 在RedHat.Enterprise.Linux_v6.3系统中安装Oracle_11gR2教程

    在RedHat.Enterprise.Linux_v6.3系统中安装Oracle_11gR2教程 本教程提供PDF格式下载: 在RedHat.Enterprise.Linux_v6.3系统中安装Ora ...

  7. 【JAVA多线程概述】

    一.多线程概述 一个进程中至少有一个线程,每一个线程都有自己运行的内容,这个内容可以称为线程要执行的任务. 不能没一个问题都使用多线程,能使用单线程解决的问题就不要使用多线程解决. 使用多线程的弊端: ...

  8. 一次Promise 实践:异步任务的分组调度

    起因是在工作中遇到一个问题,可以用一个二维数组简单描述: [[1,2,3],[4,5,6],[7,8,9]] 这里每个数字都代表“一个异步计算任务”, 每个子数组把1个或多个计算任务划分成组,要求是: ...

  9. 使用zookeeper实现分布式锁

    简介: 核心是解决资源竞争的问题 分布式系统中经常需要协调多进程或者多台机器之间的同步问题,得益于zookeeper,实现了一个分布式的共享锁,方便在多台服务器之间竞争资源时,来协调各系统之间的协作和 ...

  10. Datagard產生gap

    本文轉載自無雙的小寶的博客:http://www.cnblogs.com/sopost/archive/2010/09/11/2190085.html 有時候因為網路或備份故障等原因,主機所產生的歸檔 ...