hadoop yarn running beyond physical memory used
老是报物理内存越界,kill container,然后把yarn.scheduler.minimum-allocation-mb设成2048就好了
跟这个yarn.nodemanager.pmem-check-enabled参数应该也有关系
在这篇文章中得到启发:http://dongxicheng.org/mapreduce-nextgen/hadoop-yarn-memory-cpu-scheduling/
调度和隔离
Hadoop YARN同时支持内存和CPU两种资源的调度(默认只支持内存,如果想进一步调度CPU,需要自己进行一些配置),本文将介绍YARN是如何对这些资源进行调度和隔离的。
在YARN中,资源管理由ResourceManager和NodeManager共同完成,其中,ResourceManager中的调度器负责 资源的分配,而NodeManager则负责资源的供给和隔离。ResourceManager将某个NodeManager上资源分配给任务(这就是所 谓的“资源调度”)后,NodeManager需按照要求为任务提供相应的资源,甚至保证这些资源应具有独占性,为任务运行提供基础的保证,这就是所谓的 资源隔离。
内存资源的多少会会决定任务的生死,如果内存不够,任务可能会运行失败;相比之下,CPU资源则不同,它只会决定任务运行的快慢,不会对生死产生影响。
内存配置参数
基于以上考虑,YARN允许用户配置每个节点上可用的物理内存资源,注意,这里是“可用的”,因为一个节点上的内存会被若干个服务共享,比如一部分给YARN,一部分给HDFS,一部分给HBase等,YARN配置的只是自己可以使用的,配置参数如下
(1)yarn.nodemanager.resource.memory-mb
表示该节点上YARN可使用的物理内存总量,默认是8192(MB),注意,如果你的节点内存资源不够8GB,则需要调减小这个值,而YARN不会智能的探测节点的物理内存总量。
(2)yarn.nodemanager.vmem-pmem-ratio
任务每使用1MB物理内存,最多可使用虚拟内存量,默认是2.1。
(3) yarn.nodemanager.pmem-check-enabled
是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true。
(4) yarn.nodemanager.vmem-check-enabled
是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true。
(5)yarn.scheduler.minimum-allocation-mb
单个任务可申请的最少物理内存量,默认是1024(MB),如果一个任务申请的物理内存量少于该值,则该对应的值改为这个数。
(6)yarn.scheduler.maximum-allocation-mb
单个任务可申请的最多物理内存量,默认是8192(MB)。
默认情况下,YARN采用了线程监控的方法判断任务是否超量使用内存,一旦发现超量,则直接将其杀死。由于Cgroups对内存的控制缺乏灵活性 (即任务任何时刻不能超过内存上限,如果超过,则直接将其杀死或者报OOM),而Java进程在创建瞬间内存将翻倍,之后骤降到正常值,这种情况下,采用 线程监控的方式更加灵活(当发现进程树内存瞬间翻倍超过设定值时,可认为是正常现象,不会将任务杀死),因此YARN未提供Cgroups内存隔离机制。
CPU配置参数
在YARN中,CPU资源的组织方式仍在探索中,目前(2.2.0版本)只是一个初步的,非常粗粒度的实现方式,更细粒度的CPU划分方式已经提出来了,正在完善和实现中。
目前的CPU被划分成虚拟CPU(CPU virtual Core),这里的虚拟CPU是YARN自己引入的概念,初衷是,考虑到不同节点的CPU性能可能不同,每个CPU具有的计算能力也是不一样的,比如某个 物理CPU的计算能力可能是另外一个物理CPU的2倍,这时候,你可以通过为第一个物理CPU多配置几个虚拟CPU弥补这种差异。用户提交作业时,可以指 定每个任务需要的虚拟CPU个数。在YARN中,CPU相关配置参数如下:
(1)yarn.nodemanager.resource.cpu-vcores
表示该节点上YARN可使用的虚拟CPU个数,默认是8,注意,目前推荐将该值设值为与物理CPU核数数目相同。如果你的节点CPU核数不够8个,则需要调减小这个值,而YARN不会智能的探测节点的物理CPU总数。
(2) yarn.scheduler.minimum-allocation-vcores
单个任务可申请的最小虚拟CPU个数,默认是1,如果一个任务申请的CPU个数少于该数,则该对应的值改为这个数。
(3)yarn.scheduler.maximum-allocation-vcores
单个任务可申请的最多虚拟CPU个数,默认是32。
默认情况下,YARN是不会对CPU资源进行调度的,你需要配置相应的资源调度器让你支持
默认情况下,NodeManager不会对CPU资源进行任何隔离,你可以通过启用Cgroups让你支持CPU隔离。
由于CPU资源的独特性,目前这种CPU分配方式仍然是粗粒度的。举个例子,很多任务可能是IO密集型的,消耗的CPU资源非常少,如果此时你为它 分配一个CPU,则是一种严重浪费,你完全可以让他与其他几个任务公用一个CPU,也就是说,我们需要支持更粒度的CPU表达方式。
借鉴亚马逊EC2中CPU资源的划分方式,即提出了CPU最小单位为EC2 Compute Unit(ECU),一个ECU代表相当于1.0-1.2 GHz 2007 Opteron or 2007 Xeon处理器的处理能力。YARN提出了CPU最小单位YARN Compute Unit(YCU),目前这个数是一个整数,默认是720,由参数yarn.nodemanager.resource.cpu-ycus-per- core设置,表示一个CPU core具备的计算能力(该feature在2.2.0版本中并不存在,可能增加到2.3.0版本中),这样,用户提交作业时,直接指定需要的YCU即 可,比如指定值为360,表示用1/2个CPU core,实际表现为,只使用一个CPU core的1/2计算时间。注意,在操作系统层,CPU资源是按照时间片分配的,你可以说,一个进程使用1/3的CPU时间片,或者1/5的时间片
hadoop yarn running beyond physical memory used的更多相关文章
- 运行hadoop的时候提示物理内存或虚拟内存溢出的解决方案running beyond physical memory或者beyond vitual memory limits
当运行中出现Container is running beyond physical memory这个问题出现主要是因为物理内存不足导致的,在执行mapreduce的时候,每个map和reduce都有 ...
- spark运行任务报错:Container [...] is running beyond physical memory limits. Current usage: 3.0 GB of 3 GB physical memory used; 5.0 GB of 6.3 GB virtual memory used. Killing container.
spark版本:1.6.0 scala版本:2.10 报错日志: Application application_1562341921664_2123 failed 2 times due to AM ...
- is running beyond physical memory limits. Current usage: 2.0 GB of 2 GB physical memory used; 2.6 GB of 40 GB virtual memory used
昨天使用hadoop跑五一的数据,发现报错: Container [pid=,containerID=container_1453101066555_4130018_01_000067] GB phy ...
- hadoop is running beyond virtual memory limits问题解决
单机搭建了2.6.5的伪分布式集群,写了一个tf-idf计算程序,分词用的是结巴分词,使用standalone模式运行没有任何问题,切换到伪分布式模式运行一直报错: hadoop is running ...
- 【hadoop】 running beyond virtual memory错误原因及解决办法
问题描述: 在hadoop中运行应用,出现了running beyond virtual memory错误.提示如下: Container [pid=28920,containerID=contain ...
- [hadoop] - Container [xxxx] is running beyond physical/virtual memory limits.
当运行mapreduce的时候,有时候会出现异常信息,提示物理内存或者虚拟内存超出限制,默认情况下:虚拟内存是物理内存的2.1倍.异常信息类似如下: Container [pid=13026,cont ...
- Hadoop YARN中内存的设置
在YARN中,资源管理由ResourceManager和NodeManager共同完成,其中,ResourceManager中的调度器负责资源的分配,而NodeManager则负责资源的供给和隔离.R ...
- hive: insert数据时Error during job, obtaining debugging information 以及beyond physical memory limits
insert overwrite table canal_amt1...... 2014-10-09 10:40:27,368 Stage-1 map = 100%, reduce = 32%, Cu ...
- hadoop的job执行在yarn中内存分配调节————Container [pid=108284,containerID=container_e19_1533108188813_12125_01_000002] is running beyond virtual memory limits. Current usage: 653.1 MB of 2 GB physical memory used
实际遇到的真实问题,解决方法: 1.调整虚拟内存率yarn.nodemanager.vmem-pmem-ratio (这个hadoop默认是2.1) 2.调整map与reduce的在AM中的大小大于y ...
随机推荐
- Velocity笔记
- 001课-java_web开发入门
一.Tomcat服务器常见启动问题:(1).Java_home环境变量,由于tomcat服务器的bin目录中的一些jar文件必须使用到java类库,所以必须先配置Java_home环境变量.(2).端 ...
- C#回顾 – 4.IEnumerable 集合
- poj 1701【数学几何】
The area Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- [LeetCode] Isomorphic Strings
Isomorphic Strings Total Accepted: 30898 Total Submissions: 120944 Difficulty: Easy Given two string ...
- [LeetCode] Remove Element (三种解法)
Given an array and a value, remove all instances of that value in place and return the new length. T ...
- Android之TabHost布局(转)
1.概念 盛放Tab的容器就是TabHost.TabHost的实现有两种方式: 第一种继承TabActivity,从TabActivity中用getTabHost()方法获取TabHost.各个Tab ...
- JFreeChart 使用一 饼图之高级特性
原文链接:http://www.cnblogs.com/jtmjx/archive/2013/04/23/jfreechart_advantage.html 本文主要讲解JFreeChart中饼图的一 ...
- 【java 断点续传】
模拟 断点续传 首先,先读取word文件的 一部分 package com.sxd.readLines; import java.io.File; import java.io.FileInputSt ...
- 【spring 后台跳转前台】使用ajax访问的后台,后台正常执行,返回数据,但是不能进入前台的ajax回调函数中
问题: 使用ajax访问的后台,后台正常执行,并且正常返回数据,但是不能进入前台的ajax回调函数中 问题展示: 问题解决: 最后发现是因为后台的方法并未加注解:@ResponseBody,导致方法 ...