3122: [Sdoi2013]随机数生成器

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit:
1362  Solved: 531
[Submit][Status][Discuss]

Description

Input

输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数。 

 
接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据。保证X1和t都是合法的页码。

注意:P一定为质数

Output

共T行,每行一个整数表示他最早读到第t页是哪一天。如果他永远不会读到第t页,输出-1。

Sample Input

3
7 1 1 3 3
7 2 2 2 0
7 2 2
2 1

Sample Output

1
3
-1

HINT

0<=a<=P-1,0<=b<=P-1,2<=P<=10^9

Source

Solution

不错的题

对于题目中给出的式子,我们尝试的得出$X_{n}$关于$X_{1}$的式子

显然暴力带是不能得到的,考虑对原始式子进行变形:首先同余方程式左右是可以同时+—*/的毫无问题,那么我们对式子如下变化:

$X_{i+1}\equiv aX_{i}+b (mod p)$

==>$X_{i+1}+\frac{b}{a-1}\equiv aX_{i}+b+\frac{b}{a-1} (mod p)$
==>$X_{i+1}+\frac{b}{a-1}\equiv a(X_{i}+\frac{b}{a-1}) (mod p)$

那么我们显然能够用$X_{1}$表示$X_{n}$,层层带入得

$X_{n}+\frac{b}{a-1}\equiv a^{n-1}(X_{1}+\frac{b}{a-1}) (mod p)$

然后在模意义下,我们使用逆元计算,这样的话,利用BSGS算法求解即可

这里有些需要特判掉的情况:

1° $X_{1}=t$ 显然ans=1

2° $a==0$ 显然得到$X_{n}\equiv b(mod p)$ 那么$b=t$时 ans=2 否则 ans=-1

3° $a==1$ 显然得到$X_{n}\equiv X_{1}+(n-1)b(mod p)$ 这样显然可以用ExGCD求解

Code

(感觉这是这道题最短的代码了2333)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
long long read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-'';ch=getchar();}
return (long long)x*f;
}
int T;
long long p;
long long Quick_Pow(long long x,long long y,long long p)
{
long long re=;
for (int i=y; i; i>>=,x=x*x%p)
if (i&) re=re*x%p;
return re;
}
long long BSGS(long long a,long long b,long long p)
{
long long m=ceil(sqrt(p)),t=;
map<long long,long long>hash;
for (int i=; i<=m; i++,b=b*a%p) hash[b]=i;
long long f=Quick_Pow(a,m,p);
for (long long i=; i<=m; i++)
if (t=t*f%p,hash.count(t)) return i*m-hash[t]+;
return -;
}
int main()
{
T=read();
while (T--)
{
long long a,b,X1,t;
p=read(),a=read(),b=read(),X1=read(),t=read();
if (X1==t) {puts(""); continue;}
if (a==) {if (t==b) puts(""); else puts("-1"); continue;}
if (a==) {if (!b) puts("-1"); else printf("%lld\n",((((t-X1+p)%p)*Quick_Pow(b,p-,p)%p)%p)+); continue;}
long long aa=Quick_Pow(a-,p-,p),t1=b*aa%p,t2=(X1%p+t1)%p,tt=Quick_Pow(t2,p-,p),t3=(t+t1)%p;
printf("%lld\n",BSGS(a,t3*tt%p,p));
}
return ;
}

【BZOJ-3122】随机数生成器 BSGS的更多相关文章

  1. bzoj 3122 随机数生成器 - BSGS

    Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.   接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. ...

  2. BZOJ 3122 随机数生成器

    http://www.lydsy.com/JudgeOnline/problem.php?id=3122 题意:给出p,a,b,x1,t 已知xn=a*xn-1+b%p,求最小的n令xn=t 首先,若 ...

  3. 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1442  Solved: 552 Description ...

  4. 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判

    [BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.   接下来T行,每行有五个整数p,a,b, ...

  5. bzoj 3122 : [Sdoi2013]随机数生成器 BSGS

    BSGS算法 转自:http://blog.csdn.net/clove_unique 问题 给定a,b,p,求最小的非负整数x,满足$a^x≡b(mod \ p)$ 题解 这就是经典的BSGS算法, ...

  6. Bzoj 3122 [Sdoi2013]随机数生成器(BSGS+exgcd)

    Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Outp ...

  7. BZOJ3122 随机数生成器——BSGS

    题意 链接 给定 $p,\ a,\ b, \ x_1$,现有一数列 $$x_{i+1} \equiv (ax_i + b) \ mod \ p$$ 求最小的 $i$ 满足 $x_i = t$ 分析 代 ...

  8. [BZOJ]3671 随机数生成器(Noi2014)

    洛谷上卡不过去的朋友们可以来看看小C的程序(小C才不是标题党呢!) Description Input 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子 ...

  9. BZOJ3122: [Sdoi2013]随机数生成器(BSGS)

    题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...

随机推荐

  1. 迭代器和for-of循环 顺便带一下Es5中的.map遍历

    let set = new Set(); //set方法去除重复的数据 [1, 2, 3, 4, 2, 8, 4].map(function (elem) { set.add(elem); //遍历完 ...

  2. [C]基本数据类型:整型(int)用法详解

    1.整型int C语言提供了很多整数类型(整型),这些整型的区别在于它们的取值范围的大小,以及是否可以为负.int是整型之一,一般被称为整型.以后,在不产生歧义的情况下,我们把整数类型和int都称为整 ...

  3. fdisk分区硬盘并shell脚本自动化

    最近工作需要用到对硬盘进行shell脚本自动化分区和mount的操作,google了一些资料,下面做个总结. 如果硬盘没有进行分区(逻辑分区或者扩展分区,关于两者概念,自行google),我们将无法将 ...

  4. JVM内存管理------GC算法精解(复制算法与标记/整理算法)

    本次LZ和各位分享GC最后两种算法,复制算法以及标记/整理算法.上一章在讲解标记/清除算法时已经提到过,这两种算法都是在此基础上演化而来的,究竟这两种算法优化了之前标记/清除算法的哪些问题呢? 复制算 ...

  5. 最小/大费用最大流模板(codevs1914)

    void addedge(int fr,int to,int cap,int cos){ sid[cnt].fr=fr;sid[cnt].des=to;sid[cnt].cap=cap;sid[cnt ...

  6. name after, name for, name as

    name after, name for, name as name after是一个常见用法  :  1.Her parents named her Sophia after her grandmo ...

  7. ASP.NET 问题集锦

    [1]解决错误:从客户端(Content="<p>测试</p>")中检测到有潜在危险的 Request.Form 值      .NetFrameWork ...

  8. [转]搞ACM的你伤不起(转自Roba大神)

    劳资六年前开始搞ACM啊!!!!!!!!!! 从此踏上了尼玛不归路啊!!!!!!!!!!!! 谁特么跟劳资讲算法是程序设计的核心啊!!!!!! 尼玛除了面试题就没见过用算法的地方啊!!!!!! 谁再跟 ...

  9. 东大oj-1511: Caoshen like math

    Worfzyq likes Permutation problems.Caoshen and Mengjuju are expert at these problems . They have n c ...

  10. 屠龙之路_战胜狮身人面怪物_SecondDay

    第二天,少年们跋山涉水来到了恶龙山的山脚.前面有一座迷宫,守卫迷宫的是一只狮身人面的怪物,它出一个谜语让少年们猜,如果屠龙团猜不出答案就会被吃掉(如果你能猜出来,我就让你--),它问:"软件 ...