cf#306D. Regular Bridge(图论,构图)
2 seconds
256 megabytes
standard input
standard output
An undirected graph is called k-regular, if the degrees of all its vertices are equal k. An edge of a connected graph is called a bridge, if after removing it the graph is being split into two connected components.
Build a connected undirected k-regular graph containing at least one bridge, or else state that such graph doesn't exist.
The single line of the input contains integer k (1 ≤ k ≤ 100) — the required degree of the vertices of the regular graph.
Print "NO" (without quotes), if such graph doesn't exist.
Otherwise, print "YES" in the first line and the description of any suitable graph in the next lines.
The description of the made graph must start with numbers n and m — the number of vertices and edges respectively.
Each of the next m lines must contain two integers, a and b (1 ≤ a, b ≤ n, a ≠ b), that mean that there is an edge connecting the vertices aand b. A graph shouldn't contain multiple edges and edges that lead from a vertex to itself. A graph must be connected, the degrees of all vertices of the graph must be equal k. At least one edge of the graph must be a bridge. You can print the edges of the graph in any order. You can print the ends of each edge in any order.
The constructed graph must contain at most 106 vertices and 106 edges (it is guaranteed that if at least one graph that meets the requirements exists, then there also exists the graph with at most 106 vertices and at most 106 edges).
1
YES
2 1
1 2
Let's prove that there is no solution for even k.
Suppose our graph contains some bridges, k = 2s (even), all degrees are k. Then there always exists strongly connected component that is connected to other part of the graph with exactly one bridge.
Consider this component. Let's remove bridge that connects it to the remaining graph. Then it has one vertex with degree k - 1 = 2s - 1and some vertices with degrees k = 2s. But then the graph consisting of this component will contain only one vertex with odd degree, which is impossible by Handshaking Lemma.
Let's construct the answer for odd k. Let k = 2s - 1.
For k = 1 graph consisting of two nodes connected by edge works.
For k ≥ 3 let's construct graph with 2k + 4 nodes. Let it consist of two strongly connected components connected by bridge. Enumerate nodes of first component from 1 to k + 2, second component will be the same as the first one.
Let vertex 1 be connected to the second component by bridge. Also connect it with k - 1 edges to vertices 2, 3, ..., k. Connect vertices2, 3, ..., k to each other (add all possible edges between them), and then remove edges between every neighbouring pair, for example edges 2 - 3, 4 - 5, ..., (k - 1) - k.
Then we connect vertices 2, 3, ..., k with vertices k + 1 and k + 2. And finally add an edge between nodes k + 1 and k + 2.
Build the second component in the similar manner, and add a bridge between components. Constructed graph has one bridge, all degrees of k and consists of O(k) nodes and O(k2) edges.
Complexity of the solution — O(k2).
cf#306D. Regular Bridge(图论,构图)的更多相关文章
- cf550D Regular Bridge
Regular Bridge An undirected graph is called k-regular, if the degrees of all its vertices are equal ...
- Codeforces Round #306 (Div. 2) D. Regular Bridge 构造
D. Regular Bridge Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550/pro ...
- Codeforces 550D —— Regular Bridge——————【构造】
Regular Bridge time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces 550 D. Regular Bridge
\(>Codeforces \space 550 D. Regular Bridge<\) 题目大意 :给出 \(k\) ,让你构造出一张点和边都不超过 \(10^6\) 的无向图,使得每 ...
- D. Regular Bridge 解析(思維、圖論)
Codeforce 550 D. Regular Bridge 解析(思維.圖論) 今天我們來看看CF550D 題目連結 題目 給你一個\(k\le100\),請構造出一個至少有一個Bridge的,每 ...
- 「日常训练」Regular Bridge(Codeforces Round 306 Div.2 D)
题意与分析 图论基础+思维题. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back #defi ...
- hdu 4522(图论,构图)
湫湫系列故事——过年回家 Time Limit: 500/200 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total ...
- codeforces #550D Regular Bridge 构造
题目大意:给定k(1≤k≤100),要求构造一张简单无向连通图,使得存在一个桥,且每一个点的度数都为k k为偶数时无解 证明: 将这个图缩边双,能够得到一棵树 那么一定存在一个叶节点,仅仅连接一条桥边 ...
- cf550D. Regular Bridge(构造)
题意 给出一个$k$,构造一个无向图,使得每个点的度数为$k$,且存在一个桥 Sol 神仙题 一篇写的非常好的博客:http://www.cnblogs.com/mangoyang/p/9302269 ...
随机推荐
- UVa 714 Copying Books(二分)
题目链接: 传送门 Copying Books Time Limit: 3000MS Memory Limit: 32768 KB Description Before the inventi ...
- 个人作业—Week3
博客阅读体会 阅读了十几位软件工程师前辈的博文,了解了前辈们作为一名软件工程师的成长经历,我有一些感触. 这十几位前辈们的经历有着很大的差别,有的科班出身,有的则完全自学成才.不同的经历使得前辈们看问 ...
- Docker change directory
https://forums.docker.com/t/how-do-i-change-the-docker-image-installation-directory/1169/2 How do I ...
- JavaWeb---总结(十)HttpServletRequest对象(一)
一.HttpServletRequest介绍 HttpServletRequest对象代表客户端的请求,当客户端通过HTTP协议访问服务器时,HTTP请求头中的所有信息都封装在这个对象中,通过这个对象 ...
- mysql导出到ms sql
导出为ms access数据库,然后在ms sql server管理器中导入就可以了,用csv.sql文件的方式都没成功
- tomcat并发
Tomcat的最大并发数是可以配置的,实际运用中,最大并发数与硬件性能和CPU数量都有很大关系的.更好的硬件,更多的处理器都会使Tomcat支持更多的并发. Tomcat默认的HTTP实现是采用阻塞式 ...
- JavaScriptCore框架介绍
http://www.cocoachina.com/ios/20140409/8127.html 这个框架其实只是基于webkit中以C/C++实现的JavaScriptCore的一个包装,在旧版本i ...
- python学习笔记-(一)初识python
1.python的前世今生 想要充分的了解一个人,无外乎首先充分了解他的过去和现在:咱们学习语言也是一样的套路 1.1 python的历史 Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈp ...
- php爬虫 phpspider
<?php /** * Created by PhpStorm. * User: brady * Date: 2016/12/9 * Time: 17:32 */ ini_set("m ...
- 使用ASP.NET Web Api构建基于REST风格的服务实战系列教程【八】——Web Api的安全性
系列导航地址http://www.cnblogs.com/fzrain/p/3490137.html 前言 这一篇文章我们主要来探讨一下Web Api的安全性,到目前为止所有的请求都是走的Http协议 ...