Manacher算法是求回文串最高效的算法,能在线性时间内求出以每一个字符为中心的最长回文串。

 
首先,我们都能想出$O(N^2)$求出每一个字符为中心的最长回文串的算法。那么我们考虑这样一种情况。
如果一个回文串内包含了回文串。那么是否可以减少重复的计算。
比如
abaaba  这个字符串,要求他的最长回文串,首先我们应区分开奇数串和偶数串,考虑给每个字符中间加上一个之前从来没有出现过的字符,通常采用‘#’。
那么上面那个字符串就变成了
#a#b#a#a#b#a#
 
这时候就免除了对奇数串还是偶数串的分类讨论。即所有的回文串都是奇数串。
再思考这样一个情况,如果我们已经求出了第六个字符的最长回文串和第三个字符的最长回文串,那么第9个字符串的最长回文串长度显然等于第三个字符的最长回文串长度。即如果一个字符串是回文的,那么这个字符串倒转过来显然仍然是回文串。这就使Manacher算法变得很高效。
 
代码实现:
 
namespace solution{
      void manacher(){
            if(!((s[0]>='a'&&s[0]<='z')||(s[0]>='A'&&s[0]<='Z')))exit(0);
            LEN=strlen(s);
            t[0]='!';
            up(i,1,LEN*2){
                  t[i]='#';
                  t[i+1]=s[i/2];
                  i++;
            }
            t[2*LEN+1]='#';
            t[2*LEN+2]='$';
            LEN=2*LEN+1;
            rightt=ans=pos=0;
            up(i,1,LEN){
                  if(rightt>i)len[i]=min(rightt-i,len[2*pos-i]);
                  else        len[i]=1;
                  while(t[i-len[i]]==t[i+len[i]])len[i]++;
                  if(len[i]+i>rightt){
                        rightt=len[i]+i;
                        pos=i;
                  }
                  ans=max(ans,len[i]);
            }
            printf("%d\n",ans-1);
      }
}

首先把字符串转变,同时在最后一个字符处加上不同于所有字符的字符,防止越界。然后下面就是manacher算法的流程。不再多说。

Manacher算法的更多相关文章

  1. HDU3068 回文串 Manacher算法

    好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底.我干啥都是半吊子,一瓶子不满半瓶子晃荡. 就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔. 问题描述 给定一 ...

  2. manacher算法专题

    一.模板 算法解析:http://www.felix021.com/blog/read.php?2040 *主要用来解决一个字符串中最长回文串的长度,在O(n)时间内,线性复杂度下,求出以每个字符串为 ...

  3. lintcode最长回文子串(Manacher算法)

    题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...

  4. 1089 最长回文子串 V2(Manacher算法)

    1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 回文串是指aba.abba.cccbccc.aaaa ...

  5. 51nod1089(最长回文子串之manacher算法)

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...

  6. LeetCode 5 Longest Palindromic Substring manacher算法,最长回文子序列,string.substr(start,len) 难度:2

    https://leetcode.com/problems/longest-palindromic-substring/ manacher算法相关:http://blog.csdn.net/ywhor ...

  7. 求最长回文子串:Manacher算法

    主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...

  8. 【转】最长回文子串的O(n)的Manacher算法

    Manacher算法 首先:大家都知道什么叫回文串吧,这个算法要解决的就是一个字符串中最长的回文子串有多长.这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文 ...

  9. 字符串匹配--manacher算法模板

    manacher算法主要是处理字符串中关于回文串的问题的,它可以在 O(n) 的时间处理出以字符串中每一个字符为中心的回文串半径,由于将原字符串处理成两倍长度的新串,在每两个字符之间加入一个特定的特殊 ...

随机推荐

  1. 【MVVMLight小记】一.快速搭建一个基于MVVMLight的silverlight小程序

    写了篇MVVM小记http://www.cnblogs.com/whosedream/p/mvvmnote1.html,说好要写点MVVMLight的东西,所以接着写,以便和大家共勉. 我假设你已经有 ...

  2. Javascript 模块化开发上线解决方案

    最近又换部门了,好频繁地说...于是把这段时间搞的小工具们简单整理了一下,作了一个小的总结.这次用一个简单业务demo来向大家介绍一下Javascript模块化开发的方式和自动化合并压缩的一些自己的处 ...

  3. js 0.1+0.2!=0.3

    准确的说就是js小数采用ieee的64位的双精度,1位表示正负,11位指数,52位小数,所以对于0.1js是无法精确表示的的,所以会多点, http://www.jb51.net/article/77 ...

  4. arguments.callee 调用自身 caller,callee,apply and call

    一.Arguments该对象代表正在执行的函数和调用他的函数的参数.[function.]arguments[n]参数function :选项.当前正在执行的 Function 对象的名字.n :选项 ...

  5. crontab 定时任务

    1 linux 系统需要安装crontab ;yum install vixie-cron crontabs 2 编写shell 脚本, save_dir=/var/local/mysqlbak/Ne ...

  6. eclipse技巧总结

       如果遇到错误或警告,先试试统一的方法:在problems view中,右键error或者warnning,选择quick fix serial ID并不常用,如果不实现它,eclipse会给出一 ...

  7. Vware Workstation pro 12|虚拟机

    Vmware是比较不错的PC虚拟化软件,vmware11+不在支持32的系统安装!体积比之前小了很多 VMware 12 官方中文页面 http://vmware.com/cn/products/wo ...

  8. MVC认知路【点点滴滴支离破碎】【三】----IIS7.5上部署MVC4.0

    发布web到iis不能运行Google   ----- ╲ http://stackoverflow.com/questions/12057540/installing-asp-net-mvc-4-o ...

  9. PHPStorm2016如何安装主题

    今天放出如何安装phpstorm 主题教程,教程如下: 下载主题 地址:phpstoorm-themes.com 安装主题 PhpStorm and WebStorm themes can be in ...

  10. Android下常见动画

    摘要:Android中常见的的动画有三种:属性动画.补间动画.帧动画. 注.因为前两种内容较多,后补 一.属性动画 二.补间动画 三.帧动画:本质是将一些连贯的图片加载形成连贯的动画效果 1.在Dra ...