B - Dining

Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Appoint description:
 

Description

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: N, F, and D
Lines 2..
N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

Hint

One way to satisfy three cows is:
Cow 1: no meal
Cow 2: Food #2, Drink #2
Cow 3: Food #1, Drink #1
Cow 4: Food #3, Drink #3
The
pigeon-hole principle tells us we can do no better since there are only
three kinds of food or drink. Other test data sets are more
challenging, of course.
 

每组样例有3个数据,代表牛的数量,实物的数量,饮料的数量,每头牛都需要吃特定的食物和饮料,且只能吃一份,每种食物或者饮料被一头牛吃掉后不能再被其他的牛使用,问最多可以满足多少头牛

 
 
 
思路,对每种牛与其固定的·1食物和饮料建边,容量为1,,,,因为每头牛只能食用一种饮料或者食物,所有将牛进行拆点,,中间边容量为1,建立一个超级源点和超级会点,,牛放中间,食物和饮料建在两边就ok了
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
int edge[][];//邻接矩阵
int dis[];//距源点距离,分层图
int start,end;
int m,n;//N:点数;M,边数
int bfs(){
memset(dis,-,sizeof(dis));//以-1填充
dis[]=;
queue<int>q;
q.push(start);
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=;i<=n;i++){
if(dis[i]<&&edge[u][i]){
dis[i]=dis[u]+;
q.push(i); }
}
}
if(dis[n]>)
return ;
else
return ;//汇点的DIS小于零,表明BFS不到汇点
}
//Find代表一次增广,函数返回本次增广的流量,返回0表示无法增广
int find(int x,int low){//Low是源点到现在最窄的(剩余流量最小)的边的剩余流量
int a=;
if(x==n)
return low;//是汇点
for(int i=;i<=n;i++){
if(edge[x][i]>&&dis[i]==dis[x]+&&//联通,,是分层图的下一层
(a=find(i,min(low,edge[x][i])))){//能到汇点(a <> 0)
edge[x][i]-=a;
edge[i][x]+=a;
return a;
} }
return ;
}
int main(){
int a,b,c;
while(scanf("%d%d%d",&a,&b,&c)!=EOF){ n=a+a+b+c+;
memset(edge,,sizeof(edge));
for(int i=;i<=b;i++)
edge[][i]=;
for(int i=a+a+b+;i<=a+a+b+c;i++)
edge[i][n]=;
int u;
int sum1,sum2;
for(int i=;i<=a;i++){
// int u,v,w; scanf("%d%d",&sum1,&sum2);
for(int j=;j<=sum1;j++){
scanf("%d",&u);
edge[u][i+b]=;
}
for(int j=;j<=sum2;j++){
scanf("%d",&u);
edge[b+a+i][a+a+b+u]=;
} }
for(int i=;i<=a;i++){
edge[i+b][i+b+a]=; }
start=;
end=n;
int ans=;
while(bfs()){//要不停地建立分层图,如果BFS不到汇点才结束
ans+=find(,0x7fffffff);//一次BFS要不停地找增广路,直到找不到为止
}
printf("%d\n",ans);
}
return ;
}

POJ 3281 网络流dinic算法的更多相关文章

  1. POJ 3281 [网络流dinic算法模板]

    题意: 农场主有f种食物,d种饮料,n头牛. 接下来的n行每行第一个数代表第i头牛喜欢吃的食物数量,和第i头牛喜欢喝的饮料数目. 接下来分别是喜欢的食物和饮料的编号. 求解:农场主最多能保证几头牛同时 ...

  2. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

  3. poj 1459 Power Network : 最大网络流 dinic算法实现

    点击打开链接 Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 20903   Accepted:  ...

  4. 网络流(dinic算法)

    网络最大流(dinic) 模型 在一张图中,给定一个源点s,给定汇点t,点之间有一些水管,每条水管有一个容量,经过此水管的水流最大不超过容量,问最大能有多少水从s流到t(s有无限多的水). 解法 di ...

  5. 网络流Dinic算法

    我的模板 例题: https://vjudge.net/problem/HDU-4280 struct Edge { int lst; int from; int to; int cap; int f ...

  6. POJ 3281 网络流 拆点保证本身只匹配一对食物和饮料

    如何建图? 最开始的问题就是,怎么表示一只牛有了食物和饮料呢? 后来发现可以先将食物与牛匹配,牛再去和饮料匹配,实际上这就构成了三个层次. 起点到食物层边的容量是1,食物层到奶牛层容量是1,奶牛层到饮 ...

  7. poj 3281(网络流+拆点)

    题目链接:http://poj.org/problem?id=3281 思路:设一个超级源点和一个超级汇点,源点与食物相连,饮料与汇点相连,然后就是对牛进行拆点,一边喜欢的食物相连,一边与喜欢的饮料相 ...

  8. POJ 1459 网络流 EK算法

    题意: 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 2 1 1 2 表示 共有2个节点,生产能量的点1个,消耗能量的点1个, 传递能量的通道2条:(0,1)20 (1,0) ...

  9. 高效的网络流dinic算法模版

    #include <cstring> #include <algorithm> #include <vector> #define Maxn 120010 #def ...

随机推荐

  1. Eclipse Maven Web工程报错:java.lang.ClassNotFoundException: ContextLoaderListener

    原因:打包项目时没有把相关Maven依赖包打到WEB-INF/lib下,正常情况下,会生成lib目录并把工程的所有依赖jar包都部署到该目录下. 解决:右键点击项目--选择Properties,选择D ...

  2. thinkphp笔记

    1.load('@.function')  临时性加载 指的是Common文件下的 function 如 function select(){} , locad中的function实际指的就是 com ...

  3. JSONModel 嵌套字典数组 JSONModel nest NSDictionary NSArray

    JSONModel 嵌套字典数组  JSONModel nest NSDictionary NSArray

  4. MySQL取每组的前N条记录

    一.对分组的记录取前N条记录:例子:取前 2条最大(小)的记录 .用子查询: SELECT * FROM right2 a WHERE > (SELECT COUNT(*) FROM right ...

  5. EF事务

    var db = this.UnitOfWork as CodeFirstDbContext; using (var tan = db.Database.BeginTransaction()) { t ...

  6. cookie, localStorage, sessionStorage区别

    cookie 有过期时间,默认是关闭浏览器后失效,4K,兼容ie6,不可跨域,子域名会继承父域名的cookielocalStorage 永不过期,除非手动删除,5M,兼容IE8,不可跨域,子域名不能继 ...

  7. QT笔记

    1.菜单栏上的弹出窗口 void MainWindow::on_new_action_triggered() {     MyDialog myDialog;//MyDialog是一个ui     m ...

  8. YII2 自定义日志路径

    YII 提供的日志写入方法: 1.Yii::getLogger()->log($message, $level, $category = 'application') 2.Yii::trace( ...

  9. .NET安全审核检查表

    书籍名称:Web安全设计之道 -.NET代码安全,界面漏洞防范与程序优化   .NET安全审核检查表   检查项 任务描述 设计环节     Security descisions should no ...

  10. Mysql存储过程查询结果赋值到变量的方法

    Mysql存储过程查询结果赋值到变量的方法   把查询结果赋值到变量,大部分情况下使用游标来完成,但是如果明确知道查询结果只有一行(例如统计记录的数量,某个字段求和等),其实可以使用set或into的 ...