跳蚤
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8482   Accepted: 2514

Description

Z城市居住着很多只跳蚤。在Z城市周六生活频道有一个娱乐节目。一只跳蚤将被请上一个高空钢丝的正中央。钢丝很长,可以看作是无限长。节目主持人会给该跳蚤发一张卡片。卡片上写有N+1个自然数。其中最后一个是M,而前N个数都不超过M,卡片上允许有相同的数字。跳蚤每次可以从卡片上任意选择一个自然数S,然后向左,或向右跳S个单位长度。而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物。 
比如当N=2,M=18时,持有卡片(10, 15, 18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。 
当确定N和M后,显然一共有M^N张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。 

Input

两个整数N和M(N <= 15 , M <= 100000000)。

Output

可以完成任务的卡片数。

Sample Input

2 4

Sample Output

12

Hint

这12张卡片分别是: 
(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4), 
(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4) 

Source

 
题意:略。
思路:每一种方案gcd()=1,如果这能得到,那么这道题就容易了。有点和一道 约瑟夫环变形类似。
题意有16种方案,还有4种方案,分别是,(2,2,4),(2,4,4),(4,2,4),(4,4,4);
他们的gcd()>1。
现在的问题就转化为求n+1个数字,(a1,a2,a3,,,an,M)=1的方案数。
n最多为15,M最大10^8。 我们从反面着手,求出()>1 的数量,用总数m^n减去即可。
m^n太大了,我们用java大数来做。
由于M的存在,求(a1,a2,a3,,,an,M)容易多了。
因为(a1,a2,,,an)=xi  如果xi不是M的因子的话,
那么最后(a1,a2,a3,,,an,M)=1 是为1的。这样的话这样筛选出M的素因子就可以了。容斥一下。
 
 
 import java.math.BigInteger;
import java.util.Scanner; public class Main { static int yz[] = new int[1002];
static int Q[] = new int[2002];
static int len = 0;
static int qlen = 0;
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
while(cin.hasNext()){
int n = cin.nextInt();
int m = cin.nextInt();
BigInteger sum = BigInteger.valueOf(m);
sum = sum.pow(n);
/*
* 求m的素因子,并容斥
*/
init(m);
BigInteger tmp = BigInteger.ZERO;
BigInteger sum2 = BigInteger.ZERO;
for(int i=1;i<=qlen;i++)
{
if(Q[i]>0)
{
int k = m/Q[i];
tmp=BigInteger.valueOf(k);
tmp = tmp.pow(n);
sum2=sum2.add(tmp);
}
else if(Q[i]<0)
{
Q[i] = -Q[i];
int k = m/Q[i];
tmp = BigInteger.valueOf(k);
tmp = tmp.pow(n);
tmp = tmp.multiply(BigInteger.valueOf(-1));
sum2=sum2.add(tmp);
}
}
sum2=sum2.multiply(BigInteger.valueOf(-1));
sum=sum.add(sum2);
System.out.println(sum);
}
} private static void init(int n) {
len = 0;
for(int i=2;i<=n/i;i++)
{
if(n%i==0)
{
while(n%i==0)
n=n/i;
yz[++len] = i;
}
}
if(n!=1) yz[++len] = n;
qlen = 0;
Q[0]=-1;
for(int i=1;i<=len;i++)
{
int k = qlen;
for(int j=0;j<=k;j++)
Q[++qlen]=-1*Q[j]*yz[i];
}
}
}
 

poj 1091 跳蚤的更多相关文章

  1. POJ 1091 跳蚤 容斥原理

    分析:其实就是看能否有一组解x1,x2, x3, x4....xn+1,使得sum{xi*ai} = 1,也就是只要有任意一个集合{ai1,ai2,ai3, ...aik|gcd(ai1, ai2, ...

  2. poj 1091 跳骚

    /** 题意: 求对于小于m的n个数, 求x1*a1 + x2*a2+x3*a3........+xn*an = 1 即求 a1,a2,a3,....an 的最大公约数为1 , a1,a2....an ...

  3. POJ 1091

    这题确实是好. 其实是求x1*a1+x2*a2+....M*xn+1=1有解的条件.很明显,就是(a1,a2,...M)=1了.然后,可以想象,直接求有多少种,很难,所以,求出选择哪些数一起会不与M互 ...

  4. ZROI week3

    作业 poj 1091 跳蚤 容斥原理. 考虑能否跳到旁边就是卡牌的\(gcd\)是否是1,可以根据裴蜀定理证明. 考虑正着做十分的麻烦,所以倒着做,也就是用\(M^N - (不合法)\)即可. 不合 ...

  5. POJ题目排序的Java程序

    POJ 排序的思想就是根据选取范围的题目的totalSubmittedNumber和totalAcceptedNumber计算一个avgAcceptRate. 每一道题都有一个value,value ...

  6. [原]携程预选赛A题-聪明的猴子-GCD+DP

    题目: 聪明的猴子 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  7. POJ 跳蚤

    Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+1个自然数.其中最后一个是M ...

  8. 【poj1091】 跳蚤

    http://poj.org/problem?id=1091 (题目链接) 题意 给出一张卡片,上面有n+1个数,其中最大的数为m,每次可以向前或者向后走卡片上面的步数.问有多少种方案选出n个数组成一 ...

  9. [BZOJ1220][POJ1091][HNOI2002]跳蚤

    [BZOJ1220][POJ1091][HNOI2002]跳蚤 试题描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长. ...

随机推荐

  1. bootstrap input框清空

    <!DOCTYPE HTML> <html> <head> <link href="http://netdna.bootstrapcdn.com/t ...

  2. 生成一行html

    //压缩 一行html Regex regReplaceBlank = new Regex(">(\\s+)<", RegexOptions.IgnoreCase); ...

  3. js官网判断是否手机跳转到手机页面

    <script src="http://siteapp.baidu.com/static/webappservice/uaredirect.js" type="te ...

  4. Android课程---进度条及菜单的学习

    <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...

  5. SSH相关

    [root@www ~]# vim /etc/ssh/sshd_config# 1. 关于SSH Server 的整体设定,包含使用的port 啦,以及使用的密码演算方式# Port 22# SSH ...

  6. Run P4 without P4factory - A Simple Example In Tutorials. -2

    Reference:Github-Tutorial Exercise 2: Implementing TCP flowlet switching 实验准备: 参考之前的博客:Run P4 withou ...

  7. MipMap与三线性过滤

    现代计算机图形管线渲染图像的方法是处理这两个问题: 1 3D世界的几何图元如何投影成2D图元,进而对应到屏幕的哪些像素 2 根据已有的信息(光照,法向量,贴图),每个像素点应该怎样设置颜色 根据这两个 ...

  8. Bootstrap 轮播插件

    一.轮播 //基本实例. <div id="myCarousel" class="carousel slide"> <ol class=&qu ...

  9. Summary of Mac Versions

    1.在 submit 的过程被 cancel 掉,可能会出现某些文件被 lock 住导致没办法再重新 update and commit. 解决方法: a) Memu."Action&quo ...

  10. 《Linux内核分析》第五周 扒开系统调用的三层皮(下)

    [刘蔚然 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] WEEK FIVE( ...