[问题2014A08] 解答
[问题2014A08] 解答
由假设知 \(f(A)=\mathrm{tr}(AA')\), 因此 \[f(PAP^{-1})=\mathrm{tr}(PAP^{-1}(P')^{-1}A'P')=\mathrm{tr}((P'P)A(P'P)^{-1}A')=\mathrm{tr}(AA').\cdots(1)\] 以下设 \(P'P=(c_{ij})\), \((P'P)^{-1}=(d_{ij})\). 注意 \(P'P\) 是对称阵, 后面要用到. 令 \(A=E_{ij}\) 并代入 (1) 式, 其中 \(E_{ij}\) 是第 \((i,j)\) 元素为 1, 其余元素为 0 的基础矩阵, 则通过简单的计算可得 \[c_{ii}d_{jj}=1,\,\,\forall\,i,j.\cdots(2)\] 再令 \(A=E_{ij}+E_{kl}\) 并代入 (1) 式, 则通过简单的计算可得 \[c_{ii}d_{jj}+c_{kk}d_{ll}+c_{ki}d_{jl}+c_{ik}d_{lj}=2+2\delta_{ik}\delta_{jl},\cdots(3)\] 其中 \(\delta_{ik}\) 是 Kronecker 符号. 综合 (2) 式和 (3) 式可得 \[c_{ki}d_{jl}+c_{ik}d_{lj}=2\delta_{ik}\delta_{jl}.\cdots(4)\] 在(4) 式中令 \(j=l\), \(i\neq k\), 并注意到 \(d_{jj}\neq 0\), 故有 \(c_{ik}+c_{ki}=0\). 又因为 \(c_{ik}=c_{ki}\), 故 \[c_{ik}=0,\,\,\forall\,i\neq k.\] 于是 \(P'P\) 是一个对角阵, 从而 \(d_{jj}=c_{jj}^{-1}\), 带入 (1) 式可得 \[c_{ii}=c_{jj},\,\,\forall\,i,j.\] 因此 \(P'P=cI_n\) 是一个纯量阵. \(\Box\)
[问题2014A08] 解答的更多相关文章
- 精选30道Java笔试题解答
转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...
- 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...
- 【字符编码】Java字符编码详细解答及问题探讨
一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...
- spring-stutrs求解答
这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...
- JavaScript Bind()趣味解答 包懂~~
首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...
- CMMI4级实践中的5个经典问题及解答
这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是: A.流程,子流程部分不明白 ...
- 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final
1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...
- 知乎大牛的关于JS解答
很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...
- [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...
随机推荐
- iOS no visible @interface for 'UIButton' declares the selector errors
no visible @interface for 'UIButton' declares the selector errors 原理不是特别理解,通过清理缓存,代码更新了,Xcode还是读旧的缓 ...
- Adding supplementary tables and figures in LaTeX【转】
\renewcommand{\thetable}{S\arabic{table}} \renewcommand{\thefigure}{S\arabic{figure}} 这样就以Table S1, ...
- C#编码标准
一.命名约定 1.PascalCasting PascalCasing 每一个单词第一个字母大写,其余字母均小写.例如:FileAccess,ArraySegment等. 除了参数.变量.常量外,所有 ...
- java取整和java四舍五入方法 BigDecimal.setScale()方法详解
import java.math.BigDecimal; public class TestGetInt { public static void main(String[] args) { doub ...
- Inside Flask - flask 扩展加载过程
Inside Flask - flask 扩展加载过程 flask 扩展(插件)通常是以 flask_<扩展名字> 为扩展的 python 包名,而使用时,可用 import flask. ...
- [PointCloud] GICP
泛化的ICP算法,通过协方差矩阵起到类似于权重的作用,消除某些不好的对应点在求解过程中的作用.不过可以囊括Point to Point,Point to Plane的ICP算法,真正的是泛化的ICP. ...
- [SLAM]2D激光扫描匹配方法
1.Beam Model 2.Likehood field for k=1:size(zt,1) if zt(k,2)>0 d = -grid_dim/2; else d = grid_dim/ ...
- 调用java rest ful 接口实例
HttpWebRequest request = WebRequest.Create("http://192.168.0.99:8080/wzh-webservice/rest/login? ...
- RDIFramework.NET开发实例━表约束条件权限的使用-WinForm
RDIFramework.NET开发实例━表约束条件权限的使用-WinForm 在实际的应用中,客户常有这样的需求,指定用户或角色可以看指定条件下的数据,这里的“指定条件”在RDIFramework. ...
- c# 中几个关于string问题
1.string是一个应用类型,而不是值类型:为什么用起来很像值类型?因为微软对其做了特殊处理. 2. using System; namespace testForString { class Pr ...