[问题2014A08] 解答
[问题2014A08] 解答
由假设知 \(f(A)=\mathrm{tr}(AA')\), 因此 \[f(PAP^{-1})=\mathrm{tr}(PAP^{-1}(P')^{-1}A'P')=\mathrm{tr}((P'P)A(P'P)^{-1}A')=\mathrm{tr}(AA').\cdots(1)\] 以下设 \(P'P=(c_{ij})\), \((P'P)^{-1}=(d_{ij})\). 注意 \(P'P\) 是对称阵, 后面要用到. 令 \(A=E_{ij}\) 并代入 (1) 式, 其中 \(E_{ij}\) 是第 \((i,j)\) 元素为 1, 其余元素为 0 的基础矩阵, 则通过简单的计算可得 \[c_{ii}d_{jj}=1,\,\,\forall\,i,j.\cdots(2)\] 再令 \(A=E_{ij}+E_{kl}\) 并代入 (1) 式, 则通过简单的计算可得 \[c_{ii}d_{jj}+c_{kk}d_{ll}+c_{ki}d_{jl}+c_{ik}d_{lj}=2+2\delta_{ik}\delta_{jl},\cdots(3)\] 其中 \(\delta_{ik}\) 是 Kronecker 符号. 综合 (2) 式和 (3) 式可得 \[c_{ki}d_{jl}+c_{ik}d_{lj}=2\delta_{ik}\delta_{jl}.\cdots(4)\] 在(4) 式中令 \(j=l\), \(i\neq k\), 并注意到 \(d_{jj}\neq 0\), 故有 \(c_{ik}+c_{ki}=0\). 又因为 \(c_{ik}=c_{ki}\), 故 \[c_{ik}=0,\,\,\forall\,i\neq k.\] 于是 \(P'P\) 是一个对角阵, 从而 \(d_{jj}=c_{jj}^{-1}\), 带入 (1) 式可得 \[c_{ii}=c_{jj},\,\,\forall\,i,j.\] 因此 \(P'P=cI_n\) 是一个纯量阵. \(\Box\)
[问题2014A08] 解答的更多相关文章
- 精选30道Java笔试题解答
转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...
- 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...
- 【字符编码】Java字符编码详细解答及问题探讨
一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...
- spring-stutrs求解答
这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...
- JavaScript Bind()趣味解答 包懂~~
首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...
- CMMI4级实践中的5个经典问题及解答
这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是: A.流程,子流程部分不明白 ...
- 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final
1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...
- 知乎大牛的关于JS解答
很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...
- [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...
随机推荐
- iOS App TransportSecurity has blocked a cleartext HTTP (http://) resource load since it isinsecure. Temporary exceptions can be configured via your app's Info.plistfile
“App TransportSecurity has blocked a cleartext HTTP (http://) resource load since it isinsecure. Tem ...
- spidermark sensepostdata ntp_monlist.py
试NTP 时间服务器用的,ntp_ip_enum.py,源码如下:#!/usr/bin/env python"""Basic script to pull address ...
- Vim配置文件备忘
"我的配置 """""""""其他"""""&qu ...
- asp.net identity 2.2.0 中角色启用和基本使用(五)
建立控制器UsersAdminController 第一步:在controllers文件夹上点右键>添加>控制器, 我这里选的是“MVC5 控制器-空”,名称设置为:UsersAdminC ...
- PHP文件操作系统----主要的文件操作函数
一.文件操作系统概述 1.概述: php中的文件操作系统主要是对文件和目录的操作.文件在windows系统下分为3种不同:文件.目录.未知,在linux/unix系统下分为7种不同:block.cha ...
- 并发两个Thread的怪事——已解决
截图是马士兵视频的代码.我这样试了下,的确可行. 但是一般来说,主线程就是用来启动子线程的,所以我用了下图的形式,运行了3次.结果运行结果一直在变化,并且都没有正确的显示内容.这个截图里面编号11的线 ...
- 【转】Linux下怎样检查、如何查看某软件包是否已经安装?
因为linux安装软件的方式比较多,所以没有一个通用的办法能查到某些软件是否安装了.总结起来就是这样几类: 1.rpm包安装的,可以用rpm -qa看到,如果要查找某软件包是否安装,用 rpm -qa ...
- SQL练习题
create table Student( Sno varchar(20) primary key, Sname varchar(20) not null, Ssex varchar(20) not ...
- JavaScript挑战复杂报表——1总述
今天用自己写的库完成了一个40列填报报表的前后台调试,所花费的时间超过预期很多.遇到的坑有:ajax回调函数写错导致循环调用,没有考虑到java的request.getParameter()方法读入数 ...
- SQLite Expert 删除表数据并重置自动增长列
用下面的语句肯定是行不通的,语句不支持 truncate table t_Records 方法:1.删除表数据 2.重置自动增长列 where name='t_Records' /*name :是表名 ...