士兵站队问题sol
作者:http://www.cnblogs.com/taoziwel/articles/1859577.html
相类似题目:输油管道问题
【问题描述】
在一个划分成网格的操场上,n个士兵散乱地站在网格点上。网格点用整数坐标(x,y)表示。士兵们可以沿网格边往上、下、左、右移动一步,但在同一 时刻任一网格点上只能有一名士兵。按照军官的命令,士兵们要整齐地列成一个水平队列,即排列成(x,y),(x+1,y),…,(x+n-1,y)。如何 选择x和y的值才能使士兵们以最少的总移动步数排成一行。编程计算使所有士兵排成一行需要的最少移动步数。
【输入格式】
第1行是士兵数n,1≤n≤10000。接下来n行是士兵的初始位置,每行有2个整数x和y,-10000≤x,y≤10000。
【输出格式】
一个数据,即士兵排成一行需要的最少移动步数。
【输入样例】sol.in
5
1 2
2 2
1 3
3 -2
3 3
【输出样例】sol.out
8
分析:
一 士兵有多种移动方式
通过适当的移动顺序和移动路线可以使得同一时刻不会有两名士兵站在同一点
二 题目要求最佳移动方式(即求移动的最少步数)
题目要求转化为求士兵站立的“最终位置”,即如何取“最终位置”使得士兵移动的步数最少(最优)
Y轴方向上的考虑
设目标坐标为M,即n个士兵最终需要移动到的Y轴的坐标值为M
n个士兵的Y轴坐标分别为:
Y0,Y1,Y2 …… …… Yn-1
则最优步数S=|Y0-M|+|Y1-M|+|Y2-M|+ …… …… +|Yn-1-M|
结论:M取中间点的值使得S为最少(最优)
证明:……
从最上和最下的两个士兵开始递推……
最优位置
最优位置
归结到最后,处于中间位置的士兵的Y轴坐标值就是“最终位置”的Y轴坐标
可能有两种情况
士兵总数为双数情况:取中间两点间的任意一个位置
士兵总数为单数情况:取中间点的所在位置
解决办法:对所有的Y轴坐标进行排序(O(nlogn))或者进行线性时间选择(O(n))
然后取“中间”点的Y轴坐标值作为最佳位置M的值
最后通过公式求出Y轴方向上移动的最优步数
X轴方向上的考虑
首先需要对所有士兵的X轴坐标值进行排序
然后,按从左至右的顺序依次移动到每个士兵所对应的“最终位置”(最优),所移动的步数总和就是X轴方向上需要移动的步数
例,最左的士兵移动到“最终位置”的最左那位,第二个士兵移动到“最终位置”的第二位
则总的步数为:士兵一移动步数+士兵二移动步数+ …… +士兵n移动步数
如何确定X轴方向上的最佳的“最终位置”?
共n个士兵
他们相应的X轴坐标为:X0,X1,X2 …… …… Xn-1
设,士兵需要移动到的“最终位置”的X轴坐标值为:k,k+1,k+2 …… …… k+(n-1)
则所求最优步数S=|X0-k|+|X1- (k+1) |+|X2-(k+2)|+ …… +|Xn-1-(k+(n-1))|
经过变形S=|X0-k|+|(X1-1)-k|+|(X2-2)-k|+ …… …… +|(Xn-1-(n-1))-k|
注意到公式的形式与Y轴方向上的考虑一样,同样是n个已知数分别减去一个待定数后取绝对值,然后求和
因此还是采用取中位数的办法求得k值,最后算出最优解。
=============================分割线================================================
所以,解决该问题的思路是:
(1)对n个士兵的Y轴坐标Y0,Y1,Y2 …… …… Yn-1计算中位数M,则Y轴方向最少步数S1=|Y0-M|+|Y1-M|+|Y2-M|+ …… …… +|Yn-1-M| 。
(2)对对所有士兵的X轴坐标值进行排序得序列:X0,X1,X2 …… …… Xn-1。
然后计算Xi-i的中位数K。则x轴方向最少步数S2=|X0-k|+|(X1-1)-k|+|(X2-2)-k|+ …… …… +|(Xn-1-(n-1))-k| 。
(3)总的最少步数就是s1+s2.
关于中位数,参见百度百科:
中位数(又称中值,英语:Median),统计学中的专有名词,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。
士兵站队问题sol的更多相关文章
- 3625 codevs 士兵站队问题 中位数的妙用
士兵站队问题 题目描述 Description 在一个划分成网格的操场上,n个士兵散乱地站在网格点上.网格点用整数坐标(x,y)表示.士兵们可以沿网格边往上.下.左.右移动一步,但在同一时刻任一网格点 ...
- 洛谷 P1889 士兵站队
P1889 士兵站队 题目描述 在一个划分成网格的操场上, n个士兵散乱地站在网格点上.由整数 坐标 (x,y) 表示.士兵们可以沿网格边上.下左右移动一步,但在同时刻任一网格点上只能有名士兵.按照军 ...
- 洛谷P1889 士兵站队
题目描述 在一个划分成网格的操场上, n个士兵散乱地站在网格点上.由整数 坐标 (x,y) 表示.士兵们可以沿网格边上.下左右移动一步,但在同时刻任一网格点上只能有名士兵.按照军官的命令,们要整齐地列 ...
- LFYZ-OJ ID: 1017 士兵站队问题
分析 该题和"输油管道问题"类似,只不过由一维问题编程了二维问题.可以将总步数分解为移动到水平线y位置的总步数ysteps和移动到序列x, x+1, x+2, ... , x+n- ...
- 【CJOJ P2110】YL杯超级篮球赛
[CJOJ P2110]YL杯超级篮球赛 Description 一年一度的高一YL杯超级篮球赛开赛了.当然,所谓超级的意思是参赛人数可能多于5人.小三对这场篮球赛非常感兴趣,所以一场都没有落下.每天 ...
- Alignment--POJ1836
Description In the army, a platoon is composed by n soldiers. During the morning inspection, the sol ...
- codevs与noi做题改错本目录
从2016.2.13开始: 1. 排序超时的问题---------目录:-测试习题 2. 超高精度乘法超时问题-----------目录:高精度计算 算法:快速傅里叶算法. 压位算法 3. 高精度 ...
- [SinGuLaRiTy] 分治题目复习
[SInGuLaRiTy-1025] Copyrights (c) SinGuLaRiTy 2017. All Rights Reserved. [POJ 1905] 棍的膨胀 (Expanding ...
- $loj10156/$洛谷$2016$ 战略游戏 树形$DP$
洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...
随机推荐
- C#_批量插入数据到Sqlserver中的四种方式
先创建一个用来测试的数据库和表,为了让插入数据更快,表中主键采用的是GUID,表中没有创建任何索引.GUID必然是比自增长要快的,因为你生成一个GUID算法所花的时间肯定比你从数据表中重新查询上一条记 ...
- [Excel] Excel固定任意行或者任意列
固定第一行第一列:点击B2单元格[以B2为中介点,找你冻结部分的中介点!行列的交叉点!] 例如只想固定第一行,那么请选择A2的单元格 为中介点,A3.A4…… 例如只想固定第一列,那么请选择B1的单元 ...
- KindEditor4.1.10,支持粘贴图片(转载!)
本人扩展了KindEditor4.1.10,使得他能够在Chrome和IE11中直接粘贴复制的图片(比如通过截图工具把图片直接保存在剪切板中),然后调用上传URL上传图片 方法,修改kindedito ...
- python的类和对象——进阶篇
写在前面的话 终于,又到了周五.当小伙伴们都不再加班欢欢喜喜过周末的时候,我刚刚写完这一周的游戏作业,从面对晚归的紧皱眉头到现在的从容淡定,好像只有那么几周的时间.突然发现:改变——原来这么简单.很多 ...
- JavaScipt 源码解析 回调函数
函数是第一类对象,这是javascript中的一个重要的概念,意味着函数可以像对象一样按照第一类管理被使用,所以在javascript中的函数: 能"存储"在变量中,能作为函数的实 ...
- 对checkbox 的checked的一些总结
在做一个jquery树形结构的复选框选择的效果. 遇到的问题: 1.jquery复选框判断是否被选中 $(check).attr("checked"),可能提示为undefied: ...
- update 多表
update energylog set value=(a.value+c.value)/2from energylog as a, energylog as cwhere a.idvariable= ...
- 二分图最大权最小权完美匹配模板KM
在网上找了一份挺好的模板,先标一下哦~链接君:http://blog.csdn.net/abcjennifer/article/details/5844579 #include <iostrea ...
- 【转】Ant学习笔记——自己构建Ant编译环境
自从年初开始用NetBeans6.0,才接触到Ant. 这是今年6月份的一篇Ant学习笔记.安装 1.下载并构建环境. 去官网下载src包和bin包.解压缩它们到同一目录,运行build.bat, ...
- [vijos P1524] 最小监视代价
历时四天(本周三至本周六),本人的第一道网络流题目终于通过了…虽然这么慢才搞懂很大程度是因为脑子笨,但是还是要吐槽一下: (1)选的这道题吧居然是无向图,对于初学者我表示呵呵,昨晚到现在一直在纠结怎么 ...