(翻了翻其他的题解,觉得它们没讲清楚这个策略的正确性)

Problem

洛谷5155

题意概要:给定一个长为\(n\)的序列,可以选择以\(\frac 12\)的概率进行左右移动,也可以结束并得到当前位置上的收益,求从每个位置开始时使用最优策略的最大期望收益是多少

\(n\leq 10^5\)

Solution

关键在于需要考虑当前是选择移动还是直接结束。一个很明了的观点:如果当前移动后的收益期望比当前位置的收益大,那么会选择移动;否则选择直接停止。直接停止的贡献已经知道,那么要求的就是当前点选择移动操作后的收益期望


有一个结论:在长度为\(L\)的数轴上的位置\(x\)处,每次进行左右移动(左右概率都为\(\frac 12\)),若到达\(0\)或\(L\)即停止,则到达\(0\)停止的概率为\(\frac {L-x}L\),到达\(L\)停止的概率为\(\frac xL\)

关于这个结论的证明,考虑设在 \(i\) 开始,到\(L\)停止的概率为\(f_i\),由题可得\(f_i=\frac {f_{i-1}+f_{i+1}}2\),不难发现这个方程是等差数列的描述,又由\(f_0=0,f_L=1\)可得\(f_i=\frac xL\),即可得到上面的结论

这个结论的用处后面再说


假设我们已知一些节点移动的期望收益比当前点停止的收益低,即如果进行随机游走,一旦到达这些点,一个极端聪明的人是绝不会继续移动的,设这些点为停止点

会发现,如果从 \(i\) 出发进行移动,那么移动的期望收益一定是由 \(i\) 往前数第一个停止点和往后数第一个停止点贡献的

不妨设为 \(a\) 和 \(b\),由我们之前的结论可以得到到达 \(a\) 停止的概率为\(\frac {b-i}{b-a}\),到达 \(b\) 停止的概率为\(\frac {i-a}{b-a}\),由期望公式可得从 \(i\) 出发进行随机移动的期望收益为 \(E=v_a\cdot \frac {b-i}{b-a}+v_b\cdot \frac {i-a}{b-a}\),比划一下会发现这是满足物理里的杠杆模型的

现在我们得到了一个优秀的做法,就是对于每个点,找到其前后的第一个停止点,得到其移动的期望收益然后与自己的停止收益取最大值


但如何求出所有的停止点呢?

进一步,画个图可知,设 \(a\) 坐标为 \((a,v_a)\),\(b\) 坐标为 \((b,v_b)\),则从 \(i\) 出发进行移动的期望收益是 \(a,b\) 所连线段与直线\(x=i\)的交点纵坐标,所有的停止点会满足在\(x=i\)时,\(v_i\)要比这条线段要高

不难发现若将所有停止点 \((i,v_i)\)画出来一定成为一个凸包,反证法证明:若存在一个停止点在凸包内,则这个点的移动期望比停止期望大,也就是说这并不是一个停止点,与假设相悖,得证

所以为了得到所有的停止点,只要对所有的\((i,v_i)\)求个凸包即可

证明真有趣

Code

#include <bits/stdc++.h>
typedef long long ll; inline void read(ll&x){
char c11=getchar();x=0;while(!isdigit(c11))c11=getchar();
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();
} const int N=101000,bs=1e5;
int n,tp; struct vec{
int x;ll y;
inline vec(){}
inline vec(const int&X,const ll&Y):x(X),y(Y){}
friend inline vec operator - (const vec&A,const vec&B) {return vec(A.x-B.x,A.y-B.y);}
friend inline ll operator * (const vec&A,const vec&B) {return A.x*B.y-A.y*B.x;}
}p,st[N]; void push(vec p){
while(tp&&(p-st[tp])*(st[tp]-st[tp-1])<=0)--tp;
st[++tp]=p;
} int main(){
scanf("%d",&n);vec p;
for(int i=1;i<=n;++i)p.x=i,read(p.y),p.y*=bs,push(p);
push(vec(n+1,0));
for(int i=1,j=0;i<=n;++i){
while(j<tp&&st[j].x<i)++j;
if(st[j].x==i)printf("%lld\n",st[j].y);
else printf("%lld\n",((st[j].x-i)*st[j-1].y+(i-st[j-1].x)*st[j].y)/(st[j].x-st[j-1].x));
}return 0;
}

题解-USACO18DEC Balance Beam详细证明的更多相关文章

  1. 题解 [USACO18DEC]Balance Beam

    被概率冲昏的头脑~~~ 我们先将样例在图上画下来: 会发现,最大收益是: 看出什么了吗? 这不就是凸包吗? 跑一遍凸包就好了呀,这些点中,如果i号点是凸包上的点,那么它的ans就是自己(第二个点),不 ...

  2. Luogu5155 [USACO18DEC]Balance Beam

    题目链接:洛谷 这道题看起来是个期望题,但是其实是一道计算几何(这种题太妙了) 首先有一个很好的结论,在一个长度为$L$的数轴上,每次从$x$处出发,不停地走,有$\frac{x}{L}$的概率从右端 ...

  3. 洛谷P5155 [USACO18DEC]Balance Beam(期望,凸包)

    你以为它是一个期望dp,其实它是一个凸包哒! 设平衡木长度为\(L\),把向右走平衡木那个式子写一下: \[dp[i]=\frac{dp[i+1]+dp[i-1]}{2}\] 然后会发现这是一个等差数 ...

  4. [USACO18DEC]Balance Beam

    题目链接:这里 或者这里 答案是很显然的,记\(g(i)\)为在\(i\)下平衡木时的期望收益 那么\(g(i)=max(f(i),\frac{g(i-1)+g(i+1)}{2})\) 好了做完了 T ...

  5. Luogu5155 USACO18DEC Balance Beam(概率期望+凸包)

    假设已经求出了在每个点的最优期望收益,显然最优策略是仅当移动一次后的期望收益>当前点收益时移动.对于初始点,其两边各存在一个最近的不满足上述条件的位置,因此从初始点开始随机游走,直到移动到这两个 ...

  6. p5155 [USACO18DEC]Balance Beam

    传送门 分析 https://www.luogu.org/blog/22112/solution-p5155 代码 #include<bits/stdc++.h> using namesp ...

  7. [USACO18DEC]Balance Beam P

    根据题意不难发现这个模型是不好进行贪心的,于是可以考虑使用 \(dp\).可以令 \(dp_i\) 表示在 \(i\) 位置以最优策略能获得的报酬期望值,那么会有转移: \[dp_i = \max(f ...

  8. Android Beam 详细实现步骤

    前言 最近没怎么写东西了,主要是在了解Beam这个东东.这方面的教程真的非常有限,找了不少资料目前还没看到一篇能够让一个新手看一遍就知道实现一个Beam功能都需要那些步骤的.而且,都是用的官方的例子, ...

  9. 题解-USACO18DEC Sort It Out

    Problem 洛谷5156 题意概要:给定一个长为\(n\)的排列,可以选择一个集合\(S\)使这个集合内部元素排到自己在整个序列中应该在的位置(即对于集合\(S\)内的每一个元素\(i\),使其排 ...

随机推荐

  1. Netty中的三种Reactor(反应堆)

    目录: Reactor(反应堆)和Proactor(前摄器) <I/O模型之三:两种高性能 I/O 设计模式 Reactor 和 Proactor> <[转]第8章 前摄器(Proa ...

  2. [JUC-2]AbstractQueuedSynchronizer源码分析

    AbstactQueuedSynchronizer的基本数据结构 AbstractQueuedSynchronizer的基本数据结构为Node,关于Node,JDK作者写了详细的注释,这里我大致总结几 ...

  3. MySQL数据类型2

    一.MySQL的数据类型 主要包括以下五大类: 整数类型:BIT.BOOL.TINY INT.SMALL INT.MEDIUM INT. INT. BIG INT 浮点数类型:FLOAT.DOUBLE ...

  4. windows环境配置计划任务让weblogic的servers开机启动【原】

    准备脚本 注意如果weblogic在D盘,那么以下cmd中的所有C:都要替换成D: , 因为windows需要切盘符. 启动weblogic管理服务adminServer 的文件: startAdmi ...

  5. golang etcdclientv3使用说明

    clientv3.New() 创建连接 config = ec.Config{ Endpoints: []string{"10.0.0.5:2379"}, //连接的etcd集群地 ...

  6. DirectX11 With Windows SDK--04 使用DirectX Tool Kit帮助开发

    前言(2018/11/4) DXTK库现在已经不随Github项目提供,因为只用到了其中的键鼠类,已经过提取加入到后续的项目中 但是如果你需要配置DirectXTK到自己的项目当中,可以参考这篇博客进 ...

  7. nativefier - 快速把任意网页生成桌面应用程序

    使用前端技术开发桌面应用的技术已经相当成熟了,像早先的 NW.js,如今很火的 Electron 等,都可以轻松实现.今天给大家分享的 nativefier 就是基于 Electron 封装的,可以帮 ...

  8. 【LDAP】LDAP注入漏洞与防御

    0x01 前言 前两天爆了一个LDAP漏洞,据说存在了8年现在才被发现,感概一下,不知这8年来有多少站被搞了... 想着复现这个漏洞,就先复习一下LDAP注入的相关知识吧,差了很多资料,记一下笔记. ...

  9. C++ 模态与非模态对话框

    视频教程:模态与非模态对话框1 模态对话框:子窗口关闭之前,不能对父窗口操作 非模态对话框:子窗口关闭之前,可以对父窗口操作 插入一个对话框: 资源视图--->右击---> 进行类的绑定: ...

  10. luogu P3172 [CQOI2015]选数

    传送门 颓了一小时柿子orz 首先题目要求的是\[\sum_{x_1=l}^{r}\sum_{x_2=l}^{r}...\sum_{x_n=l}^{r}[gcd(x_1,x_2...x_n)=k]\] ...