再谈树形dp
上次说了说树形dp的入门
那么这次该来一点有难度的题目了:
UVA10859 Placing Lampposts
给定一个n个点m条边的无向无环图,在尽量少的节点上放灯,使得所有边都与灯相邻(被灯照亮)。
在灯的总数最小的前提下,被两盏灯同时照亮的边数应该尽可能大。
输入格式
第一行输入T,为数据组数。
每组数据第一行输入n,m,分别为该组数据中图的点数和边数。
以下m行,输入各边的两端点u,v。
输出格式
输出共T行。
对每组数据,一行输出三个数,最小灯数、被两盏灯同时照亮的边数、只被一盏灯照亮的边数。
n<=1000
有向无环图说白了就是一个森林(可以自己画图看看),第一问这不就是裸的树形dp求最大独立集吗?在每个森林上跑一遍树形dp就行。不过第二问第三问倒有点意思,怎么维护两边都放灯的道路的数量呢?这里介绍一个十分巧妙的方法,由于n<=1000,我们就可以把一个节点的权值设为比1000大的数,然后在转移的时候,如果这条路的两端节点没有都选,那么就+1,代表有多少只被一盏灯照亮的路,最后的答案除以k就是第一问,mod k就是第三问,用m减第三问的答案就是第二问。
void dfs(int x)
{
dp[x][]=k;//这里的k我们设为大于1000的数
dp[x][]=;
d[x]=;
for(int i=last[x];i;i=g[i].next)
{
int v=g[i].to;
if(d[v]) continue;
dfs(v);
dp[x][]+=min(dp[v][]+,dp[v][]);
dp[x][]+=dp[v][]+;//如果只被一盏灯照亮就加上1,目的是和被两盏灯同时照亮的边区分,同时也保证了被两盏灯同时照亮的边数应该尽可能大,毕竟我们取最小值。
}
}
经过这样一番神奇的操作,我们就成功的切掉了这道看似有点神仙的题目。
说了这么多,怎么能没有代码呢?
#include<iostream>
#include<cstdio>
#include<string>
#include<cmath>
#include<cstring>
#include<queue>
#include<stack>
#include<algorithm>
#define maxn 3005
using namespace std; struct edge
{
int next;
int to;
}g[maxn]; inline int read()
{
char c=getchar();
int res=,x=;
while(c<''||c>'')
{
if(c=='-')
x=-;
c=getchar();
}
while(c>=''&&c<='')
{
res=res*+(c-'');
c=getchar();
}
return x*res;
} int t,n,m,num,aa,bb,ans;
int k=;
int last[maxn],dp[maxn][],d[maxn]; inline void add(int from,int to)
{
g[++num].next=last[from];
g[num].to=to;
last[from]=num;
} void dfs(int x)
{
dp[x][]=k;
dp[x][]=;
d[x]=;
for(int i=last[x];i;i=g[i].next)
{
int v=g[i].to;
if(d[v]) continue;
dfs(v);
dp[x][]+=min(dp[v][]+,dp[v][]);
dp[x][]+=dp[v][]+;
}
} int main()
{
t=read();
while(t--)
{
n=read();m=read();
num=;ans=;
memset(last,,sizeof(last));
memset(dp,,sizeof(dp));
memset(d,,sizeof(d));
for(int i=;i<=m;i++)
{
aa=read();bb=read();
add(aa,bb);
add(bb,aa);
}
for(int i=;i<=n;i++)
{
if(!d[i])
{
dfs(i);
ans+=min(dp[i][],dp[i][]);
}
}
printf("%d %d %d\n",ans/k,m-(ans%k),ans%k);
}
}
下面再来看这样的一道简(shen)单(xian)题
UVA1220 Hali-Bula的晚会 Party at Hali-Bula
公司里有n(n<=200)个人形成一个树状结构,即除了老板之外每个员工都有唯一的直属上司。要求选尽量多的人,但不能同时选择一个人和他的直属上司。问:最多能选多少人,以及在人数最多的前提下方案是否唯一。
输入:第一行一个数n;第二行输入老板的名字;以下的n-1行中,每行是一位员工的名字和其直属上司的名字(英文单词,长度为1到100),两个名字之间有空格隔开,'0'为输入结束的标识符。
输出:一行,输出一个数字,表示最大的访客数量。并再同一行输出单词'Yes'或'No',代表目前方案是否唯一。
这个的第一问好像有点简单的样子,但是这第二问好像有点毒瘤啊。我们不妨从状态转移上入手,
dp[x][]+=dp[v][];
dp[x][]+=max(dp[v][],dp[v][]);
不难发现,如果 dp[v][1]==dp[v][0] 那么不就会出现两种方式了吗,因此我们用c数组来维护一下方案书是否唯一就行了,我们先判断孩子的方案数是否唯一,再用孩子去更新父亲,因为如果孩子的方案数不唯一,那么由这个孩子转移后的父亲肯定方案数也不唯一,这样就可以愉快的树形dp了。
像这样:
if(dp[v][]>dp[v][]&&c[v][])
{
c[x][]=;
}
if(dp[v][]>dp[v][]&&c[v][])
{
c[x][]=;
}
if(dp[v][]==dp[v][])
{
c[x][]=;
}
if(c[v][])
{
c[x][]=;
}
最后怎么少得了完整ac代码呢?
#include<iostream>
#include<cstdio>
#include<string>
#include<cmath>
#include<cstring>
#include<queue>
#include<stack>
#include<algorithm>
#include<map>
#define maxn 2005
using namespace std; struct edge
{
int next;
int to;
}g[maxn]; inline int read()
{
char c=getchar();
int res=,x=;
while(c<''||c>'')
{
if(c=='-')
x=-;
c=getchar();
}
while(c>=''&&c<='')
{
res=res*+(c-'');
c=getchar();
}
return x*res;
} int n;
string aa,bb,root;
int cnt;
int num;
int last[maxn],dp[maxn][],d[maxn],c[maxn][];
map<string,int>a; inline void add(int from,int to)
{
g[++num].next=last[from];
g[num].to=to;
last[from]=num;
} void dfs(int x)
{
d[x]=;
dp[x][]=;
dp[x][]=;
for(int i=last[x];i;i=g[i].next)
{
int v=g[i].to;
if(!d[v])
{
dfs(v);
dp[x][]+=dp[v][];
dp[x][]+=max(dp[v][],dp[v][]);
if(dp[v][]>dp[v][]&&c[v][])
{
c[x][]=;
}
if(dp[v][]>dp[v][]&&c[v][])
{
c[x][]=;
}
if(dp[v][]==dp[v][])
{
c[x][]=;
}
if(c[v][])
{
c[x][]=;
}
}
}
} int main()
{
while()
{
n=read();
if(n==) break;
cnt=;num=;
memset(last,,sizeof(last));
memset(dp,,sizeof(dp));
memset(d,,sizeof(d));
memset(c,,sizeof(c));
a.clear();
for(int i=;i<=n;i++)
{
if(i==)
{
cin>>root;
a[root]=++cnt;
}
else
{
cin>>aa>>bb;
if(!a[aa])
{
a[aa]=++cnt;
}
if(!a[bb])
{
a[bb]=++cnt;
}
add(a[aa],a[bb]);
add(a[bb],a[aa]);
}
}
dfs();
printf("%d ",max(dp[][],dp[][]));
if(dp[][]==dp[][]||(dp[][]<dp[][]&&c[][])||(dp[][]>dp[][]&&c[][]))
printf("No\n");
else printf("Yes\n");
}
}
No man or woman is worth your tears, and the one who is, won't make you cry.
--snowy
2019-01-15 18:48:21
再谈树形dp的更多相关文章
- POJ 3659 再谈树形DP
Cell Phone Network Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5325 Accepted: 188 ...
- 再探树形dp
随着校oj终于刷进了第一页,可以不用去写那些水题了,开始认真学习自己的东西,当然包括文化课.努力.. 这道题呢是道树形dp,可看到了根本就不知道怎么写思考过程: 5min 终于看懂了题 画了样例的图把 ...
- Codeforces Beta Round #14 (Div. 2) D. Two Paths 树形dp
D. Two Paths 题目连接: http://codeforces.com/contest/14/problem/D Description As you know, Bob's brother ...
- Codeforces 919D Substring (拓扑排序+树形dp)
题目:Substring 题意:给你一个有向图, 一共有n个节点 , m条变, 一条路上的价值为这个路上出现过的某个字符最多出现次数, 现求这个最大价值, 如果价值可以无限大就输出-1. 题解:当这个 ...
- 浅谈关于树形dp求树的直径问题
在一个有n个节点,n-1条无向边的无向图中,求图中最远两个节点的距离,那么将这个图看做一棵无根树,要求的即是树的直径. 求树的直径主要有两种方法:树形dp和两次bfs/dfs,因为我太菜了不会写后者这 ...
- 树形DP 学习笔记
树形DP学习笔记 ps: 本文内容与蓝书一致 树的重心 概念: 一颗树中的一个节点其最大子树的节点树最小 解法:对与每个节点求他儿子的\(size\) ,上方子树的节点个数为\(n-size_u\) ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
- NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]
题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...
- 【BZOJ-2286】消耗战 虚树 + 树形DP
2286: [Sdoi2011消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2120 Solved: 752[Submit][Status] ...
随机推荐
- Embedded training,嵌入式训练
一旦初始的模型集被创建后, HERest使用整个训练集来执行"嵌入式训练(embedded training)",HERest将对全部HMM音素集模型执行一次Baum-Welch, ...
- git撤销中间的某次提交
这几天在开发一个新功能,应为着急上线,所以就把代码提交上去了,当现在有时间又要再改改,又要把我那次提交全部删掉,想重新再写,但是代码已经合了,而且还有其他同事的代码,我的提交在中间的某个部分,所以我想 ...
- 20165325 2017-2018-2《Java程序设计》课程总结
20165325 2017-2018-2<Java程序设计>课程总结 一.每周作业链接汇总 1.预备作业一:我期待的师生关系 20165325 期望的师生关系 简要内容: 我心中的好老师 ...
- DES和3DES加密算法C语言实现【转】
转自:https://blog.csdn.net/leumber/article/details/78043675 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.cs ...
- replicate_wild_do_table和replicate-wild-ignore-table的使用【转】
使用replicate_do_db和replicate_ignore_db时有一个隐患,跨库更新时会出错. 如在Master(主)服务器上设置 replicate_do_db=test(my.conf ...
- NODE_ENV不是内部或外部命令,也不是可运行的程序
NODE_ENV不是内部或外部命令,也不是可运行的程序 解决办法:安装across-env:npm install cross-env –save-dev 在运行命令加前缀:在NODE_ENV=xxx ...
- smarty半小时快速上手教程
一:smarty的程序设计部分: 在smarty的模板设计部分我简单的把smarty在模板中的一些常用设置做了简单的介绍,这一节主要来介绍一下如何在smarty中开始我们程序设计.下载Smarty文件 ...
- git与eclipse集成之添加.gitignore文件
1.1. 添加.gitignore文件 .gitignore 配置文件用于配置不需要加入版本管理的文件 1.以斜杠/开头表示目录: 2.以星号*通配多个字符: 3.以问号?通配单个字符 4.以方括号[ ...
- Codeforces 914D - Bash and a Tough Math Puzzle 线段树,区间GCD
题意: 两个操作, 单点修改 询问一段区间是否能在至多一次修改后,使得区间$GCD$等于$X$ 题解: 正确思路; 线段树维护区间$GCD$,查询$GCD$的时候记录一共访问了多少个$GCD$不被X整 ...
- ORACLE 中ROWNUM
ORACLE 中ROWNUM用法总结! 对于 Oracle 的 rownum 问题,很多资料都说不支持>,>=,=,between...and,只能用以上符号(<.<=.!=) ...