bzoj1009 GT考试 (kmp+矩阵优化dp)
设f[i][j]是到第i位 已经匹配上了j位的状态数 然后通过枚举下一位放0~9,可以用kmp处理出一个转移的矩阵
然后就可以矩阵快速幂了
#include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxm=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N,M,K,trans[maxm][maxm],ans[maxm][maxm],tmp[maxm][maxm],fail[maxm];
char x[maxm]; inline void mul(int a[][maxm],int b[][maxm]){
for(int i=;i<M;i++){
for(int j=;j<M;j++){
tmp[i][j]=;
for(int k=;k<M;k++){
tmp[i][j]+=a[i][k]*b[k][j],tmp[i][j]%=K;
}
}
}
} inline void modp(int b){
while(b){
if(b&) mul(ans,trans),memcpy(ans,tmp,sizeof(ans));
mul(trans,trans),memcpy(trans,tmp,sizeof(tmp));
b>>=;
}
} int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd(),M=rd(),K=rd();
scanf("%s",x+);
for(i=,j=;i<=M;i++){
while(j&&x[i]!=x[j+]) j=fail[j];
if(x[i]==x[j+]) j++;
fail[i]=j;
}
for(i=;i<M;i++){
for(j='';j<='';j++){
int k=i;
while(k&&j!=x[k+]) k=fail[k];
if(j==x[k+]) k++;
if(k<M) trans[i][k]++;
}
}
ans[][]=,ans[][]=;
modp(N-);
int p=;
for(i=;i<M;i++) p+=ans[][i];
printf("%d\n",p%K);
return ;
}
bzoj1009 GT考试 (kmp+矩阵优化dp)的更多相关文章
- bzoj 1009 [HNOI2008]GT考试——kmp+矩阵优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 首先想到 确保模式串不出现 就是 确保每个位置的后缀不是该模式串. 为了dp,需要记录 ...
- 洛谷P3193 GT考试 kmp+矩阵优化dp
题意 求\(N\)位数字序列(可以有前导0)中不出现某\(M\)位子串的个数,模\(K\). \(N<=10^9,M<=20,K<=1000\) 分析 设\(dp[i][j]\)表示 ...
- [HNOI2008][bzoj1009] GT考试 [KMP+矩阵快速幂]
题面 传送门 思路 首先,如果$n$和$m$没有那么大的话,有一个非常显然的dp做法: 设$dp[i][j]$表示长度为i的字符串,最后j个可以匹配模板串前j位的情况数 那么显然,答案就是$\sum_ ...
- BZOJ 1009 [HNOI2008]GT考试 (KMP+矩阵乘法)
---恢复内容开始--- 题目大意:给定一个由数字构成的字符串A(len<=20),让你选择一个长度为n(n是给定的)字符串X,一个合法的字符串X被定义为,字符串X中不存在任何一段子串与A完全相 ...
- 矩阵优化dp
链接:https://www.luogu.org/problemnew/show/P1939 题解: 矩阵优化dp模板题 搞清楚矩阵是怎么乘的构造一下矩阵就很简单了 代码: #include < ...
- bzoj 3120 矩阵优化DP
我的第一道需要程序建矩阵的矩阵优化DP. 题目可以将不同的p分开处理. 对于p==0 || p==1 直接是0或1 对于p>1,就要DP了.这里以p==3为例: 设dp[i][s1][s2][r ...
- HDU - 2294: Pendant(矩阵优化DP&前缀和)
On Saint Valentine's Day, Alex imagined to present a special pendant to his girl friend made by K ki ...
- [六省联考2017]组合数问题 (矩阵优化$dp$)
题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...
- [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)
Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...
随机推荐
- API的设计与安全
前后端分离是个浪潮,原来只有APP客户端会考虑这些,现在连Web都要考虑前后端分离 . 这里面不得不谈的就是API的设计和安全性,这些个问题不解决好,将会给服务器安全和性能带来很大威胁 . API的设 ...
- rem 适配
postcss-pxtorem 是一款 postcss 插件,用于将单位转化为 rem lib-flexible 用于设置 rem 基准值 一.webpact postcss 插件将px转化为rem单 ...
- iframe全屏显示
<iframe webkitallowfullscreen="" mozallowfullscreen="" allowfullscreen=" ...
- CBV源码分析+APIVIew源码分析
{drf,resful,apiview,序列化组件,视图组件,认证组件,权限组件,频率组件,解析器,分页器,响应器,URL控制器,版本控制} 一.CBV源码分析准备工作: 新建一个Django项目 写 ...
- redis的配置文件解释
redis的守护进行 守护进程(Daemon Process),也就是通常说的 Daemon 进程(精灵进程),是 Linux 中的后台服务进程.它是一个生存期较长的进程,通常独立 于控制终端并且周期 ...
- 如何在cmd中集成git
1.要在cmd中集成git,要解决在cmd中输入git命令时不提示git不是内部或外部命令: 即需要将git添加到path变量中,即将D:\Git\mingw64\bin和D:\Git\mingw64 ...
- jdbc 接口的用法 Statement和PreparedStatement的区别!
package cn.zhouzhou; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Resu ...
- Windows Server 2012 添加角色时出现 failed to open runspace pool
先把所有的Windows Server 2012的更新更新了.再来添加服务器角色.就不会再出现 The Server Manager WinRM plug-in might be corrupted ...
- How to mount HFS EFI on macOS
mount_hfs /dev/disk0s1 /volumes/efi
- codeforces158C
Cd and pwd commands CodeForces - 158C Vasya is writing an operating system shell, and it should have ...