题目描述

你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。

你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希望统计一共有多少种可行的方案。

题解

其实题目的意思就是让你求这张图的生成树个数。

下面是玄学时间:

我们定义基尔霍夫矩阵为该图的度数矩阵-邻接矩阵。

度数矩阵:a[i][i]为i点的度数,其余位置全部为0。

邻接矩阵:a[i][j]为i到j的边的个数。

然后生成树的个数就是这个矩阵去掉第n行第n列完后的行列式的值。

行列式怎么求。

通过行列式的性质我们可以发现它和高斯消元非常像。

比如说用某行的倍数去减另一行,行列式不变。

某一行乘上某个数,行列式的值也会乘上某个数。

交换两列,行列式取反。

除了最后一条以外,其他的和高斯消元一模一样,所以我们可以直接把它消成上三角矩阵。

然后把对角线元素乘起来就是答案了。

证明?hehe

这里有一个大佬的证明

细节

这题模数不是质数,需要辗转相除,然后要用一些操作来避免出现/0的操作。

代码

#include<iostream>
#include<cstdio>
#define N 82
using namespace std;
typedef long long ll;
char s[N][N];
ll a[N][N];
int tot,n,m,id[N][N],lin[N][N];
ll ans;
const int mod=1e9;
const int dx[]={,,,-};
const int dy[]={,-,,};
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline void MOD(ll &a){a=(a%mod+mod)%mod;}
inline void gauss(int tot){
ans=;
for(int i=;i<=tot;++i){
for(int j=i+;j<=tot;++j){
while(a[j][i]){
ll t=a[i][i]/a[j][i];
for(int k=i;k<=tot;++k){
MOD(a[i][k]-=a[j][k]*t);
swap(a[i][k],a[j][k]);
}
ans*=-;
}
}
}
for(int i=;i<=tot;++i)MOD(ans*=a[i][i]);
}
int main(){
n=rd();m=rd();
for(int i=;i<=n;++i)scanf("%s",s[i]+);
for(int i=;i<=n;++i)for(int j=;j<=m;++j)if(s[i][j]=='.')id[i][j]=++tot;
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)if(s[i][j]=='.'){
for(int k=;k<;++k){
if(s[i+dx[k]][j+dy[k]]=='.')a[id[i][j]][id[i][j]]++,lin[id[i][j]][id[i+dx[k]][j+dy[k]]]++;
}
}
for(int i=;i<=tot;++i)for(int j=;j<=tot;++j)a[i][j]-=lin[i][j];
gauss(tot-);
cout<<ans;
return ;
}

[HEOI2015]小Z的房间(矩阵树定理学习笔记)的更多相关文章

  1. 【bzoj4031】[HEOI2015]小Z的房间 矩阵树定理

    题目描述 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一 ...

  2. bzoj4031 [HEOI2015]小Z的房间——矩阵树定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4031 矩阵树定理的模板题(第一次的矩阵树定理~): 有点细节,放在注释里了. 代码如下: # ...

  3. BZOJ 4031: [HEOI2015]小Z的房间 [矩阵树定理 行列式取模]

    http://www.lydsy.com/JudgeOnline/problem.php?id=4031 裸题........ 问题在于模数是$10^9$ 我们发现消元的目的是让一个地方为0 辗转相除 ...

  4. BZOJ 4031: [HEOI2015]小Z的房间 (矩阵树定理 板题)

    背结论 : 度-邻 CODE1 O(n3logn)O(n^3logn)O(n3logn) #include <bits/stdc++.h> using namespace std; typ ...

  5. [HEOI2015] 小Z的房间 - 矩阵树定理

    #include <bits/stdc++.h> using namespace std; #define int long long const int N = 105; const i ...

  6. bzoj 4031: 小Z的房间 矩阵树定理

    bzoj 4031: 小Z的房间 矩阵树定理 题目: 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时 ...

  7. LG4111/LOJ2122 「HEOI2015」小Z的房间 矩阵树定理

    问题描述 LG4111 题解 矩阵树定理板子题. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; #defin ...

  8. BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)

    题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...

  9. BZOJ 4031 [HEOI2015]小Z的房间(Matrix-Tree定理)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4031 [题目大意] 你突然有了一个大房子,房子里面有一些房间. 事实上,你的房子可以看 ...

随机推荐

  1. C# Note15:设置Window图标的正确方式

    Windows Presentation Foundation(WPF)独立应用程序有两种类型的图标: 一个程序集(assembly) 图标,通过在应用程序的项目构建文件中使用<Applicat ...

  2. Socket和ObjectOutputStream问题

    用到Socket序列化对象网络传输时ObjectOutputStream一直刷新连接 用户代码 package com.jachs.ladflower.ladflower; import java.n ...

  3. python[练习题]:实现Base64编码

    要求自己实现算法,不用库. Base64简介: Base64是一种用64个字符来表示任意二进制数据的方法. 用记事本打开exe.jpg.pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多 ...

  4. java学习之—递归实现二分查找法

    /** * 递归实现二分查找法 * Create by Administrator * 2018/6/21 0021 * 上午 11:25 **/ class OrdArray{ private lo ...

  5. python之路--递归, 二分法

    一 . 递归 自己调用自己, 递归的入口(参数)  和  出口(return),  树形结构的遍历. def func(): print("我是递归") func() func() ...

  6. 二、core abp 数据库迁移

    一.数据库迁移-ABP(库) 1.配置链接数据库:  贴以下代码: { "ConnectionStrings": { "Default": "Serv ...

  7. 十一、ASP.NET Boilerplate

    一.ASP.NET Boilerplate 实体是 DDD(领域驱动设计)的核心概念之一.Eric Evans 是这样描述的“很多对象不是通过它们的属性定义的,而是通过一连串的连续性事件和标识定义的” ...

  8. 获取网络图片并显示在picturbox上,byte[]数组转换成Image:

    private void getWebPicture_Click(object sender, EventArgs e) { WebRequest request = WebRequest.Creat ...

  9. LODOP打印css样式rgba显示黑色区块

    当LODOP打印html超文本出现问题的时候,要删减排查一下样式,查看Lodop传入的内部的html超文本和样式,可查看本博客另一篇博文:删减发现有问题的样式,并解决该问题,尽量使用通用的css样式, ...

  10. css居中小技巧

    一.行内元素-水平居中 在父元素的样式中添加: text-align:center; 二.定宽块级元素-水平居中 所谓定宽块级元素指块级元素的宽度指定,而不是默认的100%,否则此方法无效: 代码: ...