池化操作时在卷积神经网络中经常采用过的一个基本操作,一般在卷积层后面都会接一个池化操作,但是近些年比较主流的ImageNet上的分类算法模型都是使用的max-pooling,很少使用average-pooling,这对我们平时设计模型时确实有比较重要的参考作用,但是原因在哪里呢?

通常来讲,max-pooling的效果更好,虽然max-pooling和average-pooling都对数据做了下采样,但是max-pooling感觉更像是做了特征选择,选出了分类辨识度更好的特征,提供了非线性,根据相关理论,特征提取的误差主要来自两个方面:(1)邻域大小受限造成的估计值方差增大;(2)卷积层参数误差造成估计均值的偏移。一般来说,average-pooling能减小第一种误差,更多的保留图像的背景信息,max-pooling能减小第二种误差,更多的保留纹理信息。average-pooling更强调对整体特征信息进行一层下采样,在减少参数维度的贡献上更大一点,更多的体现在信息的完整传递这个维度上,在一个很大很有代表性的模型中,比如说DenseNet中的模块之间的连接大多采用average-pooling,在减少维度的同时,更有利信息传递到下一个模块进行特征提取。

但是average-pooling在全局平均池化操作中应用也比较广,在ResNet和Inception结构中最后一层都使用了平均池化。有的时候在模型接近分类器的末端使用全局平均池化还可以代替Flatten操作,使输入数据变成一位向量。

max-pooling和average-pooling的使用性能对于我们设计卷积网络还是很有用的,虽然池化操作对于整体精度提升效果也不大,但是在减参,控制过拟合以及提高模型性能,节约计算力上的作用还是很明显的,所以池化操作时卷积设计上不可缺少的一个操作。

图像分类中max-pooling和average-pooling之间的异同的更多相关文章

  1. 深度学习基础系列(十)| Global Average Pooling是否可以替代全连接层?

    Global Average Pooling(简称GAP,全局池化层)技术最早提出是在这篇论文(第3.2节)中,被认为是可以替代全连接层的一种新技术.在keras发布的经典模型中,可以看到不少模型甚至 ...

  2. 深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构 ...

  3. 深度拾遗(06) - 1X1卷积/global average pooling

    什么是1X1卷积 11的卷积就是对上一层的多个feature channels线性叠加,channel加权平均. 只不过这个组合系数恰好可以看成是一个11的卷积.这种表示的好处是,完全可以回到模型中其 ...

  4. Spark UDAF实现举例 -- average pooling

    目录 1.UDAF定义 2.向量平均(average pooling) 2.1 average的并行化 2.2 代码实现 2.3 使用 参考 1.UDAF定义 spark中的UDF(UserDefin ...

  5. Global Average Pooling Layers for Object Localization

    For image classification tasks, a common choice for convolutional neural network (CNN) architecture ...

  6. Network in Network(2013),1x1卷积与Global Average Pooling

    目录 写在前面 mlpconv layer实现 Global Average Pooling 网络结构 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 <Net ...

  7. [原创]java WEB学习笔记81:Hibernate学习之路--- 对象关系映射文件(.hbm.xml):hibernate-mapping 节点,class节点,id节点(主键生成策略),property节点,在hibernate 中 java类型 与sql类型之间的对应关系,Java 时间和日期类型的映射,Java 大对象类型 的 映射 (了解),映射组成关系

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  8. java.sql.SQLException: [Microsoft][ODBC 驱动程序管理器] 在指定的 DSN 中,驱动程序和应用程序之间的体系结构不匹配

    今天把sql server 2008 r2装了起来,64位的,然后就迫不及待地体验连接数据库的操作,编程语言是java.我一开始学了一种非常老的连接方式,使用JDBC-ODBC桥.初次使用不太熟练,所 ...

  9. [Microsoft][ODBC 驱动程序管理器] 在指定的 DSN 中,驱动程序和应用程序之间的体系结构不匹配

    环境:  操作系统:64位WIN7   数据库:SQL Server 2000 SP1  开发语言:J2EE 在Servlet连接数据库时出错提示:  [Microsoft][ODBC 驱动程序管理器 ...

  10. Android进阶笔记08:Android 中Activity、Window和View之间的关系

    1. Android 中Activity.Window和View之间的关系(比喻): Activity像一个工匠(控制单元),Window像窗户(承载模型),View像窗花(显示视图) LayoutI ...

随机推荐

  1. SQL查询语句的进阶使用

    MySQL的进阶使用 sql语句一些功能的使用 导入现有大量数据文件步骤 1) 把*.sql文件拷贝到Linux某一位置(例如Desktop) 2) Linux命令行进入该位置 cd ~/Deskto ...

  2. java ee wildfly 批处理 job 工作

    配置批处理job,同时启动两个并行任务processData,syncTableTask,执行往后执行第三个任务job:playDurationTask. xml配置如下: <job id=&q ...

  3. Spring注解方式实现任务调度

    原文:http://docs.spring.io/spring/docs/4.0.1.BUILD-SNAPSHOT/javadoc-api/ 注解类型:EnableScheduling @Target ...

  4. wildfly tomcat 服务器不响应 不返回 死住了 查看tcp CLOSE_WAIT 暴多

    I'm also having the same issue with a very latest Tomcat server (7.0.40). It goes non-responsive onc ...

  5. 图片margin:0 auto;为何不居中

    图片margin:0 auto;为何不居中 关键: img元素 display设为block 代码: <!DOCTYPE html> <html> <head> & ...

  6. poj1637 Sightseeing tour(混合图欧拉回路)

    题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. ...

  7. SQL问题+知识点总结总

    1.SQL中的内置函数有哪些?(Count.Sum.Avg.Max.Min) 2.SQL查询语句的执行顺序.(先执行from语句,再执行条件语句,最后执行Select 语句投影查询信息) 3.Havi ...

  8. java中不定参数的使用

    https://www.cnblogs.com/xy-hong/p/7192796.html

  9. Storm常用的类

    BaseRichSpout (消息生产者)BaseBasicBolt (消息处理者)TopologyBuilder (拓扑的构建器)Values (将数据存放到values ,发送到下个组件)Tupl ...

  10. Pandas透视表(pivot_table)详解

    介绍 也许大多数人都有在Excel中使用数据透视表的经历,其实Pandas也提供了一个类似的功能,名为pivot_table.虽然pivot_table非常有用,但是我发现为了格式化输出我所需要的内容 ...