Luogu5205 【模板】多项式开根(NTT+多项式求逆)
https://www.cnblogs.com/HocRiser/p/8207295.html 安利!
写NTT把i<<=1写成了i<<=2,又调了一年。发现我的日常就是数组开小调调调,变量名写错调调调,反向判if调调调,退役吧。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 998244353
#define N 550000
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,a[N],r[N],b[N],A[N],B[N],f[N],g[N],t;
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-2);}
void DFT(int n,int *a,int g)
{
for (int i=0;i<n;i++) r[i]=(r[i>>1]>>1)|(i&1)*(n>>1);
for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=2;i<=n;i<<=1)
{
int wn=ksm(g,(P-1)/i);
for (int j=0;j<n;j+=i)
{
int w=1;
for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>1)]%P;
a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P;
}
}
}
}
void IDFT(int *a,int n)
{
DFT(n,a,inv(3));
int u=inv(n);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*u%P;
}
void mul(int *a,int *b,int n)
{
DFT(n,a,3),DFT(n,b,3);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
IDFT(a,n);
}
void Inv(int *a,int *b,int n)
{
if (n==1) {for (int i=0;i<t;i++) b[i]=0;b[0]=inv(a[0]);return;}
Inv(a,b,n>>1);
for (int i=0;i<n;i++) A[i]=a[i];
for (int i=n;i<(n<<1);i++) A[i]=0;
n<<=1;
DFT(n,A,3),DFT(n,b,3);
for (int i=0;i<n;i++) b[i]=1ll*b[i]*(P+2-1ll*A[i]*b[i]%P)%P;
IDFT(b,n);
n>>=1;
for (int i=n;i<(n<<1);i++) b[i]=0;
}
void Sqrt(int *a,int *b,int n)
{
if (n==1) {for (int i=0;i<t;i++) b[i]=0;b[0]=1;return;}
Sqrt(a,b,n>>1);Inv(b,B,n);
for (int i=0;i<n;i++) A[i]=a[i];
for (int i=n;i<(n<<1);i++) A[i]=0;
n<<=1;
DFT(n,A,3),DFT(n,b,3),DFT(n,B,3);
int inv2=inv(2);
for (int i=0;i<n;i++) b[i]=(b[i]+1ll*A[i]*B[i]%P)*inv2%P;
IDFT(b,n);
n>>=1;
for (int i=n;i<(n<<1);i++) b[i]=0;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("sqrt.in","r",stdin);
freopen("sqrt.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=0;i<n;i++) a[i]=read();
t=1;while (t<=n) t<<=1;
Sqrt(a,b,t);
for (int i=0;i<n;i++) printf("%d ",b[i]);
return 0;
}
Luogu5205 【模板】多项式开根(NTT+多项式求逆)的更多相关文章
- CF438E The Child and Binary Tree(生成函数+多项式开根+多项式求逆)
传送门 可以……这很多项式开根模板……而且也完全不知道大佬们怎么把这题的式子推出来的…… 首先,这题需要多项式开根和多项式求逆.多项式求逆看这里->这里,这里讲一讲多项式开根 多项式开方:已知多 ...
- BZOJ3625 [Codeforces Round #250]小朋友和二叉树(生成函数+多项式开根)
设f(n)为权值为n的神犇二叉树个数.考虑如何递推求这个东西. 套路地枚举根节点的左右子树.则f(n)=Σf(i)f(n-i-cj),cj即根的权值.卷积的形式,cj也可以通过卷上一个多项式枚举.可以 ...
- 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...
- FFT模板 生成函数 原根 多项式求逆 多项式开根
FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> ...
- BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根
生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. ...
- 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根
首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...
- [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)
[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...
- [BZOJ3625][Codeforces Round #250]小朋友和二叉树 多项式开根+求逆
https://www.lydsy.com/JudgeOnline/problem.php?id=3625 愉快地列式子.设\(F[i]\)表示权值为\(i\) 的子树的方案数,\(A[i]\)为\( ...
- [BZOJ3625][CF438E]小朋友和二叉树 (多项式开根,求逆)
题面 题解 设多项式的第a项为权值和为a的二叉树个数,多项式的第a项表示是否为真,即 则,所以F是三个多项式的卷积,其中包括自己: ,1是F的常数项,即. 我们发现这是一个一元二次方程,可以求出,因为 ...
- P5277 【模板】多项式开根(加强版)(bsgs or Cipolla)
题面 传送门 题解 首先你得会多项式开根->这里 其次你得会解形如 \[x^2\equiv a \pmod{p}\] 的方程 这里有两种方法,一个是\(bsgs\)(这里),还有一种是\(Cip ...
随机推荐
- Centos 7 修改系统时区
timedatectl status Local time: 四 2014-12-25 10:52:10 CST Universal time: 四 2014-12-25 02:52:10 UTC R ...
- Mysql多实例之mysql服务脚本
1. #init port=3306 mysql_user="root" mysql_pwd="cancer" CmdPath="/applicati ...
- 杭电 1061 Rightmost Digit计算N^N次方的最后一位
Problem Description Given a positive integer N, you should output the most right digit of N^N. Input ...
- 最短路问题 Floyd+Dijkstra+SPFA
参考博客:https://blog.csdn.net/qq_35644234/article/details/60875818 题目来源:http://acm.hdu.edu.cn/showprobl ...
- 关于对于system函数和c++标准下的新的变量定义方式{}
- R语言绘制QQ图
无论是直方图还是经验分布图,要从比较上鉴别样本是否处近似于某种类型的分布是困难的 QQ图可以帮我们鉴别样本的分布是否近似于某种类型的分布 R语言,代码如下: > qqnorm(w);qqline ...
- 利用tushare进行对兴业银行股价的爬取,并使用numpy进行分析
import sysimport tushare as tsimport numpy as npdata=ts.get_h_data('601066')print(data)#读出兴业银行7列数据da ...
- anaconda安装win10
注意事项: 1.下载安装,双选勾勾 2.安装python3.5的版本 conda create -n tensorflow python=3.5 3.激活环境activate tensorflow 4 ...
- Git使用过程中的问题
Q-1:怎么切换到远程的分支 本地已经有一个代码库了(是从github上clone的),但是现在远程库中一个新的branch,怎么拉取远程分支,并在本地创建该分支(内容一样).how to do? # ...
- Ubuntu端口开放
一.关于iptable的介绍 维基百科:https://zh.wikipedia.org/wiki/Iptables 注意:iptables的操作需要root权限 二.具体操作 sudo apt-ge ...