POJ 3264-Balanced Lineup-RMQ问题
裸RMQ问题
#include <cstdio>
#include <algorithm>
#include <cstring> using namespace std; const int MAXN = ; int min_dp[MAXN][],max_dp[MAXN][];
int min_mm[MAXN],max_mm[MAXN];
int b[MAXN];
int N,Q; void min_initRMQ(int n,int b[])
{
min_mm[] = -;
for(int i=;i<=n;i++)
{
min_mm[i] = ( (i&(i-)) == ) ? min_mm[i-]+ : min_mm[i-];
min_dp[i][] = b[i];
}
for(int j=;j<=min_mm[n];j++)
for(int i=;i + (<<j) - <= n;i++)
min_dp[i][j] = min(min_dp[i][j-],min_dp[i+(<<(j-))][j-]); } int min_rmq(int x,int y)
{
int k = min_mm[y-x+];
return min(min_dp[x][k],min_dp[y-(<<k)+][k]);
} void max_initRMQ(int n,int b[])
{
max_mm[] = -;
for(int i=;i<=n;i++)
{
max_mm[i] = ( (i&(i-)) == ) ? max_mm[i-]+ : max_mm[i-];
max_dp[i][] = b[i];
}
for(int j=;j<=max_mm[n];j++)
for(int i=;i + (<<j) - <= n;i++)
max_dp[i][j] = max(max_dp[i][j-],max_dp[i+(<<(j-))][j-]); } int max_rmq(int x,int y)
{
int k = max_mm[y-x+];
return max(max_dp[x][k],max_dp[y-(<<k)+][k]);
} int main()
{
//freopen("input.in","r",stdin);
while(~scanf("%d%d",&N,&Q))
{
for(int i=;i<=N;i++)
{
scanf("%d",&b[i]);
}
min_initRMQ(N,b);
max_initRMQ(N,b); for(int i=,l,r;i<Q;i++)
{
scanf("%d%d",&l,&r);
printf("%d\n",max_rmq(l,r) - min_rmq(l,r) );
//printf("%d\n",max_rmq(l,r));
}
}
}
POJ 3264-Balanced Lineup-RMQ问题的更多相关文章
- Poj 3264 Balanced Lineup RMQ模板
题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...
- poj 3264 Balanced Lineup (RMQ)
/******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...
- POJ - 3264 Balanced Lineup (RMQ问题求区间最值)
RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就 ...
- poj 3264 Balanced Lineup (RMQ算法 模板题)
RMQ支持操作: Query(L, R): 计算Min{a[L],a[L+1], a[R]}. 预处理时间是O(nlogn), 查询只需 O(1). RMQ问题 用于求给定区间内的最大值/最小值问题 ...
- POJ 3264 Balanced Lineup -- RMQ或线段树
一段区间的最值问题,用线段树或RMQ皆可.两种代码都贴上:又是空间换时间.. RMQ 解法:(8168KB 1625ms) #include <iostream> #include < ...
- POJ 3264 Balanced Lineup RMQ ST算法
题意:有n头牛,编号从1到n,每头牛的身高已知.现有q次询问,每次询问给出a,b两个数.要求给出编号在a与b之间牛身高的最大值与最小值之差. 思路:标准的RMQ问题. RMQ问题是求给定区间内的最值问 ...
- POJ 3264 Balanced Lineup 【ST表 静态RMQ】
传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total S ...
- poj 3264 Balanced Lineup(RMQ裸题)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 43168 Accepted: 20276 ...
- POJ 3264 Balanced Lineup(RMQ)
点我看题目 题意 :N头奶牛,Q次询问,然后给你每一头奶牛的身高,每一次询问都给你两个数,x y,代表着从x位置上的奶牛到y位置上的奶牛身高最高的和最矮的相差多少. 思路 : 刚好符合RMQ的那个求区 ...
- POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 53703 Accepted: 25237 ...
随机推荐
- [翻译] C# 8.0 新特性
原文: Building C# 8.0 [译注:原文主标题如此,但内容大部分为新特性介绍,所以意译标题为 "C# 8.0 新特性"] C# 的下一个主要版本是 8.0.我们已经为它 ...
- 从 0 到 1 实现 React 系列 —— 5.PureComponent 实现 && HOC 探幽
本系列文章在实现一个 cpreact 的同时帮助大家理顺 React 框架的核心内容(JSX/虚拟DOM/组件/生命周期/diff算法/setState/PureComponent/HOC/...) ...
- C#中委托,匿名函数,lamda表达式复习
一.委托 1.就给类比较,类用class声明,委托用delegate声明. 2.委托要指向一个真正的方法. 3.委托的签名,要和指向的方法一样. //1.声明一个委托 public delegate ...
- Python_复习_34
+# 函数 —— 2天 # 函数的定义和调用 # def 函数名(形参): #函数体 #return 返回值 #调用 函数名(实参) # 站在形参的角度上 : 位置参数,*args,默认参数(陷阱), ...
- p2394 精度题
题意:输出n/23即可 解法一: 利用高精度的long double直接输出,但由于n的长度不确定,我们要加个限制%12Lf #include <cstdio> int main(){ l ...
- MySQLl导入导出SQL文件
window 1.导出整个数据库 mysqldump -u 用户名 -p 数据库名 > 导出的文件名 mysqldump -u dbuser -p dbname > dbname.sql ...
- #Leetcode# 942. DI String Match
https://leetcode.com/problems/di-string-match/ Given a string S that only contains "I" (in ...
- PAT L2-024 部落
https://pintia.cn/problem-sets/994805046380707840/problems/994805056736444416 在一个社区里,每个人都有自己的小圈子,还可能 ...
- MySQL查询优化注意下面的四个细节
原文:http://bbs.landingbj.com/t-0-244231-1.html 在任何一个数据库中,查询优化都是不可避免的一个话题.对于数据库工程师来说,优化工作是最有挑战性的工作.MyS ...
- IdentityServer4【Topic】之StartUp中的配置
Startup 身份服务器是中间件和服务的组合.所有的配置都是在启动类中完成的. Configuring services 通过调用如下代码在DI(dependency inject,依赖注入)中添加 ...