裸RMQ问题

 #include <cstdio>
#include <algorithm>
#include <cstring> using namespace std; const int MAXN = ; int min_dp[MAXN][],max_dp[MAXN][];
int min_mm[MAXN],max_mm[MAXN];
int b[MAXN];
int N,Q; void min_initRMQ(int n,int b[])
{
min_mm[] = -;
for(int i=;i<=n;i++)
{
min_mm[i] = ( (i&(i-)) == ) ? min_mm[i-]+ : min_mm[i-];
min_dp[i][] = b[i];
}
for(int j=;j<=min_mm[n];j++)
for(int i=;i + (<<j) - <= n;i++)
min_dp[i][j] = min(min_dp[i][j-],min_dp[i+(<<(j-))][j-]); } int min_rmq(int x,int y)
{
int k = min_mm[y-x+];
return min(min_dp[x][k],min_dp[y-(<<k)+][k]);
} void max_initRMQ(int n,int b[])
{
max_mm[] = -;
for(int i=;i<=n;i++)
{
max_mm[i] = ( (i&(i-)) == ) ? max_mm[i-]+ : max_mm[i-];
max_dp[i][] = b[i];
}
for(int j=;j<=max_mm[n];j++)
for(int i=;i + (<<j) - <= n;i++)
max_dp[i][j] = max(max_dp[i][j-],max_dp[i+(<<(j-))][j-]); } int max_rmq(int x,int y)
{
int k = max_mm[y-x+];
return max(max_dp[x][k],max_dp[y-(<<k)+][k]);
} int main()
{
//freopen("input.in","r",stdin);
while(~scanf("%d%d",&N,&Q))
{
for(int i=;i<=N;i++)
{
scanf("%d",&b[i]);
}
min_initRMQ(N,b);
max_initRMQ(N,b); for(int i=,l,r;i<Q;i++)
{
scanf("%d%d",&l,&r);
printf("%d\n",max_rmq(l,r) - min_rmq(l,r) );
//printf("%d\n",max_rmq(l,r));
}
}
}

POJ 3264-Balanced Lineup-RMQ问题的更多相关文章

  1. Poj 3264 Balanced Lineup RMQ模板

    题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...

  2. poj 3264 Balanced Lineup (RMQ)

    /******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...

  3. POJ - 3264 Balanced Lineup (RMQ问题求区间最值)

    RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就 ...

  4. poj 3264 Balanced Lineup (RMQ算法 模板题)

    RMQ支持操作: Query(L, R):  计算Min{a[L],a[L+1], a[R]}. 预处理时间是O(nlogn), 查询只需 O(1). RMQ问题 用于求给定区间内的最大值/最小值问题 ...

  5. POJ 3264 Balanced Lineup -- RMQ或线段树

    一段区间的最值问题,用线段树或RMQ皆可.两种代码都贴上:又是空间换时间.. RMQ 解法:(8168KB 1625ms) #include <iostream> #include < ...

  6. POJ 3264 Balanced Lineup RMQ ST算法

    题意:有n头牛,编号从1到n,每头牛的身高已知.现有q次询问,每次询问给出a,b两个数.要求给出编号在a与b之间牛身高的最大值与最小值之差. 思路:标准的RMQ问题. RMQ问题是求给定区间内的最值问 ...

  7. POJ 3264 Balanced Lineup 【ST表 静态RMQ】

    传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total S ...

  8. poj 3264 Balanced Lineup(RMQ裸题)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 43168   Accepted: 20276 ...

  9. POJ 3264 Balanced Lineup(RMQ)

    点我看题目 题意 :N头奶牛,Q次询问,然后给你每一头奶牛的身高,每一次询问都给你两个数,x y,代表着从x位置上的奶牛到y位置上的奶牛身高最高的和最矮的相差多少. 思路 : 刚好符合RMQ的那个求区 ...

  10. POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53703   Accepted: 25237 ...

随机推荐

  1. el-date-picker 快捷日期简单计算

    const oneDaySeconds = 3600 * 1000 * 24 pickerOptions: { shortcuts: [ { text: '今天', onClick(picker) { ...

  2. Windows Community Toolkit 3.0 - InfiniteCanvas

    概述 InfiniteCanvas 是一个 Canvas 控件,它支持无限画布的滚动,支持 Ink,文本,格式文本,画布缩放操作,撤销重做操作,导入和导出数据. 这是一个非常实用的控件,在“来画视频” ...

  3. BAT美团滴滴java面试大纲(带答案版)之三:多线程synchronized

    继续面试大纲系列文章. 从这一篇开始,我们进入ava编程中的一个重要领域---多线程!多线程就像武学中对的吸星大法,理解透了用好了可以得道成仙,俯瞰芸芸众生:而滥用则会遭其反噬. 在多线程编程中要渡的 ...

  4. Ubuntu Desktop: 备份与还原

    Ubuntu Desktop 版本默认自带了图形化的备份/还原工具 Déjà Dup.该工具主要用来备份和还原用户的数据,当然我们也可以用它来备份/还原系统的数据.本文主要介绍 Déjà Dup 的主 ...

  5. socketserver + ftp

    --------------------------------------------生活不止眼前的苟且,还有诗和远方的田野. day 29 socketserver + ftp # # ----- ...

  6. vertical-align和图片下方空白问题

    <style> .box1,.box2{ display: inline-block; background-color:#f0f3f9; width:150px; height: 150 ...

  7. vue 二三倍图适配,1像素边框

    //文件名为mixin.scss// 2,3倍图适配 @mixin bg-image($url){ background-image: url("~imgs/icon/" + $u ...

  8. ES使用C#添加和更新文档

    ElasticSearch 使用C#添加和更新文档 这是ElasticSearch 2.4 版本系列的第四篇: 第一篇:ES1:Windows下安装ElasticSearch 第二篇:ES2:Elas ...

  9. (关于数据传输安全)SSH协议

    这里说的不是java的SSH框架,是1995年,芬兰学者Tatu Ylonen设计的SSH协议. 有计算机网络基础的同学都知道,在网上传输的数据是可以被截取的.那么怎样才能获得安全? 一.春点行话 电 ...

  10. [编程笔记]第一章 C语言概述

    //C语言学习笔记 第一讲 C语言概述 第二讲 基本编程知识 第三讲 运算符和表达式 第四讲 流程控制 第五讲 函数 第六讲 数组 第七讲 指针 第八讲 变量的作用域和存储方式 第九讲 拓展类型 第十 ...