Description

Input

第一行包含一个正整数testcase,表示当前测试数据的测试点编号。保证1≤testcase≤20。 
第二行包含三个整数N,M,T,分别表示节点数、初始边数、操作数。第三行包含N个非负整数表示 N个节点上的权值。 
 接下来 M行,每行包含两个整数x和 y,表示初始的时候,点x和点y 之间有一条无向边, 接下来 T行,每行描述一个操作,格式为“Q x y k”或者“L x y ”,其含义见题目描述部分。

Output

对于每一个第一类操作,输出一个非负整数表示答案。

Sample Input

1
8 4 8
1 1 2 2 3 3 4 4
4 7
1 8
2 4
2 1
Q 8 7 3 Q 3 5 1
Q 10 0 0
L 5 4
L 3 2 L 0 7
Q 9 2 5 Q 6 1 6

Sample Output

2
2
1
4
2

HINT

对于第一个操作 Q 8 7 3,此时 lastans=0,所以真实操作为Q 8^0 7^0 3^0,也即Q 8 7 3。点8到点7的路径上一共有5个点,其权值为4 1 1 2 4。这些权值中,第三小的为 2,输出 2,lastans变为2。对于第二个操作 Q 3 5 1 ,此时lastans=2,所以真实操作为Q 3^2 5^2 1^2 ,也即Q 1 7 3。点1到点7的路径上一共有4个点,其权值为 1 1 2 4 。这些权值中,第三小的为2,输出2,lastans变为 2。之后的操作类似。

 
思路:
强制在线,第一个操作求树上第k小,主席树+LCA就好了,另一个操作连接两棵树,启发式合并就好了,这道题占的空间很大,主席树要开大点,之前开了100倍还是RE了。
 
实现代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mid int m = (l + r) >> 1 const int M = 1e5 + ;
struct node{
int to,next;
}e[M<<]; int idx,cnt,cnt1;
int c[M],head[M],sum[M*],root[M],ls[M*],rs[M*],p[M][],dep[M],fa[M],v[M];
int a[M],b[M],ans[M];
void add(int u,int v){
e[++cnt1].to = v;e[cnt1].next = head[u];head[u] = cnt1;
} void pushup(int rt){
sum[rt] = sum[ls[rt]] + sum[rs[rt]];
} void update(int p,int l,int r,int old,int &rt){
rt = ++idx; ls[rt] = ls[old]; rs[rt] = rs[old];
sum[rt] = sum[old] + ;
if(l == r) return ;
mid;
if(p <= m) update(p,l,m,ls[old],ls[rt]);
else update(p,m+,r,rs[old],rs[rt]);
pushup(rt);
} int query(int old,int now,int lc,int flc,int l,int r,int k){
if(l == r) return l;
mid;
int ret = sum[ls[old]] + sum[ls[now]] - sum[ls[lc]] - sum[ls[flc]];
if(ret >= k) query(ls[old],ls[now],ls[lc],ls[flc],l,m,k);
else query(rs[old],rs[now],rs[lc],rs[flc],m+,r,k-ret);
} int Find(int x){
if(x == fa[x]) return x;
fa[x] = Find(fa[x]);
return fa[x];
} void dfs(int u,int faz){
dep[u] = dep[faz] + ;
for(int i = ;i < ;i ++)
p[u][i] = p[p[u][i-]][i-];
update(v[u],,cnt,root[faz],root[u]);
for(int i = head[u];i;i=e[i].next){
int v = e[i].to;
if(v == faz) continue;
p[v][] = u;
dfs(v,u);
}
} int lca(int a,int b){
if(dep[a] > dep[b]) swap(a,b);
int h = dep[b] - dep[a];
for(int i = ;(<<i)<=h;i ++){
if((<<i)&h) b = p[b][i];
}
if(a!=b){
for(int i = ;i >= ;i --){
if(p[a][i] != p[b][i]){
a = p[a][i]; b = p[b][i];
}
}
a = p[a][];
}
return a;
} int main()
{
int t,n,m;
int last = ;
scanf("%d",&t);
scanf("%d%d%d",&n,&m,&t);
for(int i = ;i <= n;i ++){
scanf("%d",&a[i]);
b[i] = a[i];
}
sort(b+,b++n);
cnt = unique(b+,b++n)-b-;
for(int i = ;i <= n;i ++){
v[i] = lower_bound(b+,b++cnt,a[i]) - b;
ans[v[i]] = a[i];
} for(int i = ;i <= n;i ++){
fa[i] = i; c[i] = ;
}
int u,v,k;
for(int i = ;i <= m;i ++){
scanf("%d%d",&u,&v);
add(u,v); add(v,u);
int fx = Find(u),fy = Find(v);
if(fx != fy){
fa[fy] = fx;
c[fx] += c[fy];
}
}
for(int i = ;i <= n;i ++){
if(!dep[i]) dfs(Find(i),);
}
char op[];
for(int i = ;i <= t;i ++){
scanf("%s",op);
if(op[] == 'Q'){
scanf("%d%d%d",&u,&v,&k);
u ^= last; v ^= last; k^= last;
int lc = lca(u,v);
int num = query(root[u],root[v],root[lc],root[p[lc][]],,cnt,k);
last = ans[num];
printf("%d\n",last);
}
else{
scanf("%d%d",&u,&v);
u ^= last; v ^= last;
add(u,v); add(v,u);
int fx = Find(u),fy = Find(v);
if(c[fx] < c[fy]){
swap(u,v); swap(fx,fy);
}
fa[fy] = fx; c[fx] += c[fx];
p[v][] = u; dfs(v,u);
}
}
return ;
}

bzoj 3123 [Sdoi2013]森林(主席树+启发式合并+LCA)的更多相关文章

  1. Bzoj 3123: [Sdoi2013]森林(主席树+启发式合并)

    3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 第一行包含一个正整数testcase,表示当前 ...

  2. BZOJ 3123: [Sdoi2013]森林 [主席树启发式合并]

    3123: [Sdoi2013]森林 题意:一个森林,加边,询问路径上k小值.保证任意时刻是森林 LCT没法搞,树上kth肯定要用树上主席树 加边?启发式合并就好了,小的树dfs重建一下 注意 测试点 ...

  3. [bzoj3123] [SDOI2013]森林 主席树+启发式合并+LCT

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  4. [BZOJ3123][Sdoi2013]森林 主席树+启发式合并

    3123: [Sdoi2013]森林 Time Limit: 20 Sec  Memory Limit: 512 MB Description Input 第一行包含一个正整数testcase,表示当 ...

  5. 【BZOJ 3123】 [Sdoi2013]森林 主席树启发式合并

    我们直接按父子关系建主席树,然后记录倍增方便以后求LCA,同时用并查集维护根节点,而且还要记录根节点对应的size,用来对其启发式合并,然后每当我们合并的时候我们都要暴力拆小的一部分重复以上部分,总时 ...

  6. luoguP3302 [SDOI2013]森林 主席树 启发式合并

    题目链接 luoguP3302 [SDOI2013]森林 题解 本来这题树上主席树暴力启发式合并就完了 结果把lca写错了... 以后再也不这么写了 复杂度\(O(nlog^2n)\) "f ...

  7. [SDOI2013]森林 主席树+启发式合并

    这题的想法真的很妙啊. 看到题的第一眼,我先想到树链剖分,并把\(DFS\)序当成一段区间上主席树.但是会发现在询问的时候,可能会非常复杂,因为你需要把路径拆成很多条轻链和重链,它们还不一定连续,很难 ...

  8. 【BZOJ-3123】森林 主席树 + 启发式合并

    3123: [Sdoi2013]森林 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2738  Solved: 806[Submit][Status] ...

  9. 洛谷 P3302 [SDOI2013]森林 Lebal:主席树 + 启发式合并 + LCA

    题目描述 小Z有一片森林,含有N个节点,每个节点上都有一个非负整数作为权值.初始的时候,森林中有M条边. 小Z希望执行T个操作,操作有两类: Q x y k查询点x到点y路径上所有的权值中,第k小的权 ...

随机推荐

  1. SQL Server 跨服务器查询

    select * from OPENDATASOURCE( 'SQLOLEDB', 'Data Source=10.10.10.10;User ID=sa;Password=123456'). [CF ...

  2. Wannafly挑战赛28

    总结- A-开始觉得是找规律,最开始模拟当时我觉得如果L达到1e9的范围的话,岂不是要加1e9次,模拟也就没有认真写,现在想来,后面由于加的不再是1,而是我前面的值,这样相当了一个斐波那契的类型,而斐 ...

  3. Oja’s rule

    目录 Oja's rule 背景 Hebbian learning 主要的一些理论 论文里面一些主要的假设 引理1 引理2 引理3 定理1 LEMMA 3(ALL) 引理 4 定理 2 定理 3(关于 ...

  4. An error occurred while updating the entries. See the inner exception for details.

    EF插入或更新数据时出现错误提示:An error occurred while updating the entries. See the inner exception for details.的 ...

  5. hana-banach定理

    1.  x1不是X除开G以外所有的空间 2.如果极大元不是全空间的话,根据前面的讨论,还可以延拓,这就和极大矛盾了

  6. 软件工程(FZU2015) 增补作业

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 说明 张老师为FZU软件工程2015班级添加了一次增补作业,总分10分,deadline是2016/01/01-2016/ ...

  7. 四、Object.defineProperty总结

    Object.defineProperty() 参考:https://segmentfault.com/a/1190000007434923 定义: 方法会直接在一个对象上定义一个新属性,或者修改一个 ...

  8. java依赖的斗争:依赖倒置、控制反转和依赖注入

    控制反转(Inversion Of Controller)的一个著名的同义原则是由Robert C.Martin提出的依赖倒置原则(Dependency Inversion Principle),它的 ...

  9. [官网]CREATE EXTENSION PostGreSQL 创建函数的方法

    CREATE EXTENSION https://www.postgresql.org/docs/current/sql-createextension.html CREATE EXTENSION — ...

  10. 简单比较init-method,afterPropertiesSet和BeanPostProcessor

    一.简单介绍 1.init-method方法,初始化bean的时候执行,可以针对某个具体的bean进行配置.init-method需要在applicationContext.xml配置文档中bean的 ...