【NOI2008】志愿者招募

【2017山东day7】养猫做法类似。

都是神仙题。

首先我设\(c_{i,j}=[l[j]\leq i\leq r[j]]\) ,于是就可以列出下面的不等式:

\[\displaystyle
\begin{align}
\sum_{i=1}^mc_{1,i}*d_i&\geq a_1\\
&...\\
\sum_{i=1}^mc_{n,i}*d_i&\geq a_n\\
0&=0
\end{align}
\]

我们加一个辅助变量\(y_i\),使不等式变成等式,并且在最后加上\(0=0\):

\[\displaystyle
\begin{align}
\sum_{i=1}^mc_{1,i}*d_i&=y_1+a_1\\
&...\\
\sum_{i=1}^mc_{n,i}*d_i&=y_n+a_n\\
0&=0
\end{align}
\]

差分后:

\[\begin{align}
\displaystyle
\sum_{i=1}^mc_{1,i}*d_i&=y_1+a_1\\
\sum_{i=1}^mc_{2,i}*d_i+y_1+a_1&=\sum_{i=1}^mc_{1,i}*d_i+y_2+a_2\\
&...\\
\sum_{i=1}^mc_{n,i}*d_i+y_{n-1}+a_{n-1}
&=\sum_{i=1}^mc_{n-1,i}*d_i+y_n+a_n\\
y_n+a_n&=\sum_{i=1}^mc_{n,i}*d_i
\end{align}
\]

然后每个变量就会在等式左边和右边各出现一次。对于一个变量\(x\),我们从它出现于右边的等式连一条边到它出现于左边的等式。对于常量,它出现在左边就从\(S\)连一条边到该等式,否则该等式连一条边到\(T\)。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 2005
#define M 20005 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n,m;
int S,T;
int l[M],r[M],c[M];
int a[N];
struct road {
int to,next;
int flow;
ll cost;
}s[(N+M)*5];
int h[N],cnt=1;
void add(int i,int j,int f,ll c) {
s[++cnt]=(road) {j,h[i],f,c};h[i]=cnt;
s[++cnt]=(road) {i,h[j],0,-c};h[j]=cnt;
} ll ans=0;
ll tag[N];
ll lim[N];
ll dis[N];
int fr[N],e[N];
bool in[N];
queue<int>q;
int tot;
int maxflow; bool ins[N];
int dfs(int v,int maxf) {
if(v==T) return maxf;
ins[v]=1;
int ret=0;
for(int i=h[v];i;i=s[i].next) {
int to=s[i].to;
if(!ins[to]&&s[i].flow&&dis[to]==dis[v]+s[i].cost) {
int dlt=dfs(to,min(maxf,s[i].flow));
ret+=dlt;
s[i].flow-=dlt;
s[i^1].flow+=dlt;
maxf-=dlt;
if(!maxf) return ins[v]=0,ret;
}
}
ins[v]=0;
return ret;
} ll dinic() {
ll ans=0;
while(1) {
int tem=dfs(S,1e9);
if(!tem) break;
ans+=tem;
}
return ans;
} bool spfa() {
memset(dis,0x3f,sizeof(dis));
dis[S]=0;
q.push(S);
while(!q.empty()) {
int v=q.front();
q.pop();
in[v]=0;
for(int i=h[v];i;i=s[i].next) {
int to=s[i].to;
if(s[i].flow&&dis[to]>dis[v]+s[i].cost) {
dis[to]=dis[v]+s[i].cost;
fr[to]=v;
e[to]=i;
if(!in[to]) in[to]=1,q.push(to);
}
}
}
if(dis[T]>1e9) return 0;
ans+=dinic()*dis[T];
return 1;
} int main() {
n=Get(),m=Get();
for(int i=1;i<=n;i++) a[i]=Get();
for(int i=1;i<=m;i++) l[i]=Get(),r[i]=Get(),c[i]=Get();
T=n+2;
for(int i=1;i<=n;i++) {
add(i,T,a[i],0);
add(S,i+1,a[i],0);
add(i,i+1,1e9,0);
}
for(int i=1;i<=m;i++) {
add(r[i]+1,l[i],1e9,c[i]);
}
while(spfa());
cout<<ans;
return 0;
}

【NOI2008】志愿者招募的更多相关文章

  1. BZOJ 1061: [Noi2008]志愿者招募

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4064  Solved: 2476[Submit][Stat ...

  2. BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记】

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3975  Solved: 2421[Submit][Stat ...

  3. [BZOJ1061][Noi2008]志愿者招募

    [BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...

  4. BZOJ 1061: [Noi2008]志愿者招募 费用流

    1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...

  5. bzoj1061: [Noi2008]志愿者招募

    线性规划与费用流.http://www.cnblogs.com/iiyiyi/p/5616080.html.数组范围开错了!!!然后2.31-1=0x7fffffff!=0x7f7f7f7f. 开始以 ...

  6. NOI2008 志愿者招募

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1859  Solved: 1169[Submit][Stat ...

  7. 线性规划||网络流(费用流):COGS 288. [NOI2008] 志愿者招募

    [NOI2008] 志愿者招募 输入文件:employee.in   输出文件:employee.out   简单对比 时间限制:2 s   内存限制:512 MB [问题描述] 申奥成功后,布布经过 ...

  8. 从[NOI2008志愿者招募]浅谈线性规划在网络流构图上的巧用

    首先来看一下题..http://www.lydsy.com/JudgeOnline/problem.php?id=1061 1061: [Noi2008]志愿者招募 Description 申奥成功后 ...

  9. 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5291  Solved: 3173[Submit][Stat ...

  10. BZOJ 1061: [Noi2008]志愿者招募【单纯形裸题】

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4813  Solved: 2877[Submit][Stat ...

随机推荐

  1. tomcat开启自启动

    linux方式 #!/bin/bash #chkconfig: #description: Starts and Stops the Tomcat daemon. #by benjamin ##### ...

  2. SQL多表联合查询(交叉连接,内连接,外连接)

    连接查询:     交叉连接:   交叉连接返回的结果是被连接的两个表中所有数据行的笛卡尔积,也就是返回第一个表中符合查询条件的数据航数乘以第二个表中符合,查询条件的数据行数,例如department ...

  3. JAVA面试题(8)

    java基础以及多个“比较” 1.Collections.sort排序内部原理 在Java 6中Arrays.sort()和Collections.sort()使用的是MergeSort,而在Java ...

  4. 异常:getHibernateFlushMode is not valid without active transaction; nested exception is org.hibernate.HibernateException: getHibernateFlushMode is not valid without active transaction getHibernateFlu

    场景: 在使用spring整合hibernate调用的HibernateTemplate时报错解决: 在spring配置文件中添加事务的配置 <bean id="hibernateTr ...

  5. JS取出两个数组中的不同或相同元素

    1.取出两个数组的不同元素 var arr1 = [0,1,2,3,4,5]; var arr2 = [0,4,6,1,3,9]; function getArrDifference(arr1, ar ...

  6. TS学习随笔(二)->类型推论,联合类型

    这篇内容指南:        -----类型推论  -----联合类型 类型推论 第一篇中我们看了TS的基本使用和基本数据类型的使用,知道了变量在使用的时候都得加一个类型,那我们可不可以不加呢,这个嘛 ...

  7. 【机器学习基本理论】详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

    [机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximu ...

  8. BDD实战篇 - 在.NET Core下安装Specflow

    这是<如何用ABP框架快速完成项目 >系列中的一篇文章. BDD很赞!比TDD先进很多,能够大大提高编码效率. 让我们动手起来吧!先在.NET Core下安装Specflow! 官网教程在 ...

  9. Linux查看机器的硬件信息

    转载:https://linux.cn/article-9932-1.html

  10. mysql随笔系列-1

    MySQL数据库管理 本人实验所用的MySQL数据库版本:5.5.56-MariaDB MariaDB Server  操作系统:centos7.5 1.创建数据库 MariaDB [(none)]& ...