51Nod1773 A国的贸易 多项式 FWT
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1773.html
题目传送门 - 51Nod1773
题意
给定一个长度为 $2^n$ 的序列,第 $i$ 项为 $f_{i-1}$ 。
现在让你做 $T$ 次这样的运算:($i\in[0,2^n)$)
$$f^{\prime}_i=f_i+\sum_{j=0}^{n-1} f_{i\ {\rm XOR} \ 2^j}$$
输出最终的 $f$ 序列。
题解
构造转移多项式 $g$ 。使得 $g_0=1,g_{2^i}=1$ 。
答案为 $f * g^T$ ,其中 $*$ 为异或卷积 。
代码
#include <bits/stdc++.h>
using namespace std;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x;
}
void write(int x){
if (x>9)
write(x/10);
putchar(x%10+'0');
}
const int N=1<<20,mod=1e9+7,inv2=5e8+4;
int n,k,d,a[N],b[N];
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=1LL*x*x%mod)
if (y&1)
ans=1LL*ans*x%mod;
return ans;
}
void FWT(int a[],int n,int flag){
for (int d=1;d<n;d<<=1)
for (int i=0;i<n;i+=(d<<1))
for (int j=0;j<d;j++){
int &L=a[i+j],&R=a[i+j+d];
int x=a[i+j],y=a[i+j+d];
L=x+y;
if (L>=mod)
L-=mod;
R=x-y;
if (R<0)
R+=mod;
if (flag==-1){
L=1LL*L*inv2%mod;
R=1LL*R*inv2%mod;
}
}
}
int main(){
d=read(),k=read(),n=1<<d;
for (int i=0;i<n;i++)
a[i]=read();
memset(b,0,sizeof b);
b[0]=1;
for (int i=0;i<d;i++)
b[1<<i]=1;
FWT(a,n,1),FWT(b,n,1);
for (int i=0;i<n;i++)
a[i]=1LL*a[i]*Pow(b[i],k)%mod;
FWT(a,n,-1);
for (int i=0;i<n;i++)
write(a[i]),putchar(' ');
return 0;
}
51Nod1773 A国的贸易 多项式 FWT的更多相关文章
- 51nod1773 A国的贸易
基准时间限制:2 秒 空间限制:524288 KB 分值: 40 A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们 ...
- 【51Nod1773】A国的贸易 解题报告
[51Nod1773]A国的贸易 Description 给出一个长度为 \(2^n\) 的序列,编号从\(0\)开始.每次操作后,如果 \(i\) 与 \(j\) 的二进制表示只差一位则第 \(i\ ...
- [51Nod 1773] A国的贸易
[51Nod 1773] A国的贸易 题目描述 A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们有着神奇的贸易规则. ...
- 【51Nod1773】A国的贸易 FWT+快速幂
题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...
- 【51nod】1773 A国的贸易
题解 FWT板子题 可以发现 \(dp[i][u] = \sum_{i = 0}^{N - 1} dp[i - 1][u xor (2^i)] + dp[i - 1][u]\) 然后如果把异或提出来可 ...
- 51NOD 1773:A国的贸易——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1773 参考1:FWT讲解 https://www.cnblogs.com ...
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
- [学习笔记]FWT——快速沃尔什变换
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
随机推荐
- Laravel 5.2问题-----postman进api的post请求,为什么出现Forbidden?
Forbidden?就纳闷了,有写验证规则的,但是它出现紧张,感觉就是我落了设置什么东西了才会这样? 果不其然, Laravel有个一自动验证的,创建的时候是默认打开的, namespace App\ ...
- 如何在Mac 终端上Git 项目的一次常规操作
首先,Git的工作流是怎样的? 你的本地仓库由 git 维护的三棵“树”组成. 第一个是你的 工作目录,它持有实际文件: 第二个是 暂存区(Index),它像个缓存区域,临时保存你的改动: 最后是 H ...
- Laravel 5.2控制器--RESTful 资源控制器
laravel的资源控制器 一.创建资源控制器 在命令行上,创建一个新的资源控制器 php artisan make:controller TestController --resource 然后在你 ...
- Go append 省略号
1 前言 Golang append加...用法缘由 2 代码 type Product struct { ID int64 `json:"id"` Name string `js ...
- [MySQL]group by 与 having 结合函数 的统计技巧
group by 与 having 允许字段使用函数,根据函数运行的结果group by分组或having设置选择条件; 同时group by 与 having 也允许使用字段别名 示例表a: id ...
- Struts2配置拦截器
<package name="loginaction" namespace="/" extends="struts-default"& ...
- 使用FreeRTOS进行性能和运行时分析
在MCU on Eclipse网站上看到Erich Styger在2月25日发的博文,一篇关于使用FreeRTOS进行性能和运行分析的文章,本人觉得很有启发,特将其翻译过来以备参考.当然限于个人水平, ...
- Confluence 6 home 修改 Home 目录的位置
当 Confluence 第一次启动的时候,Confluence 将会读取 confluence-init.properties 文件并从这个文件中确定如何去查找 Home 目录. 希望修改 home ...
- Confluence 6 连接到 Jira 用户管理的限制
当你在使用 JIRA 目录为用户目录的时候,请考虑下面的一些限制和建议. 不知道跨平台的多应用单点登录 当你使用 JIRA 为你的目录管理器的时候,系统将不能支持跨平台的单点登录.当 JIRA 用作目 ...
- ( linker command failed with exit code 1) 错误解决方案 项目使用的是pod
targets -> build settings -> architectures -> build active architecture only -> debug 改成 ...