线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元, 是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种为代表的非线性函数。比较常用的线性整流函数有斜坡函数,以及带泄露整流函数 (Leaky ReLU),其中  为神经元(Neuron)的输入。线性整流被认为有一定的生物学原理[1],并且由于在实践中通常有着比其他常用激活函数(譬如逻辑函数)更好的效果,而被如今的深度神经网络广泛使用于诸如图像识别等计算机视觉[1]人工智能领域。

  定义:

通常意义下,线性整流函数指代数学中的斜坡函数,即

而在神经网络中,线性整流作为神经元的激活函数,定义了该神经元在线性变换 {\displaystyle \mathbf {w} ^{T}\mathbf {x} +b}之后的非线性输出结果。换言之,对于进入神经元的来自上一层神经网络的输入向量 {\displaystyle x},使用线性整流激活函数的神经元会输出

至下一层神经元或作为整个神经网络的输出(取决现神经元在网络结构中所处位置)。

  优势:

相比于传统的神经网络激活函数,诸如逻辑函数(Logistic sigmoid)和tanh等双曲函数,线性整流函数有着以下几方面的优势:

  • 仿生物学原理:相关大脑方面的研究表明生物神经元的信息编码通常是比较分散及稀疏的[6]。通常情况下,大脑中在同一时间大概只有1%-4%的神经元处于活跃状态。使用线性修正以及正则化(regularization)可以对机器神经网络中神经元的活跃度(即输出为正值)进行调试;相比之下,逻辑函数在输入为0时达到 {\displaystyle {\frac {1}{2}}},即已经是半饱和的稳定状态,不够符合实际生物学对模拟神经网络的期望[1]。不过需要指出的是,一般情况下,在一个使用修正线性单元(即线性整流)的神经网络中大概有50%的神经元处于激活态[1]
  • 更加有效率的梯度下降以及反向传播:避免了梯度爆炸和梯度消失问题
  • 简化计算过程:没有了其他复杂激活函数中诸如指数函数的影响;同时活跃度的分散性使得神经网络整体计算成本下降

参考文档:

1 https://zh.wikipedia.org/wiki/%E7%BA%BF%E6%80%A7%E6%95%B4%E6%B5%81%E5%87%BD%E6%95%B0

线性整流函数(ReLU)的更多相关文章

  1. MATLAB——神经网络构造线性层函数linearlayer

    % example5_7.m x=-:; y=*x-; randn(); % 设置种子,便于重复执行 y=y+randn(,length(y))*1.5; % 加入噪声的直线 plot(x,y,'o' ...

  2. * SPOJ PGCD Primes in GCD Table (需要自己推线性筛函数,好题)

    题目大意: 给定n,m,求有多少组(a,b) 0<a<=n , 0<b<=m , 使得gcd(a,b)= p , p是一个素数 这里本来利用枚举一个个素数,然后利用莫比乌斯反演 ...

  3. matlab-非线性拟合函数lsqcurvefit的使用和初值选取

    所解决问题: 我们知道我们的表达式是y=A+B*exp(-x.^2)-C./log(x), 而且现在我们手里面有x与y对应的一大把数据. 我们需要根据x, y的值找出最佳的A.B.C值.则我们现在借助 ...

  4. Deep Learning--week1~week3

    week1 一张图片,设像素为64*64, 颜色通道为红蓝绿三通道,则对应3个64*64实数矩阵 为了用向量表示这些矩阵,将这些矩阵的像素值展开为一个向量x作为算法的输入 从红色到绿色再到蓝色,依次按 ...

  5. 深度解析Droupout与Batch Normalization

    Droupout与Batch Normalization都是深度学习常用且基础的训练技巧了.本文将从理论和实践两个角度分布其特点和细节. Droupout 2012年,Hinton在其论文中提出Dro ...

  6. 干货 | 这可能全网最好的BatchNorm详解

    文章来自:公众号[机器学习炼丹术].求关注~ 其实关于BN层,我在之前的文章"梯度爆炸"那一篇中已经涉及到了,但是鉴于面试经历中多次问道这个,这里再做一个更加全面的讲解. Inte ...

  7. 神经网络的另一种非线性阶跃函数---ReLU函数

    import numpy as np import matplotlib.pylab as plt from matplotlib.font_manager import FontProperties ...

  8. ReLU 函数

    线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元,是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种 为代 ...

  9. MINST手写数字识别(三)—— 使用antirectifier替换ReLU激活函数

    这是一个来自官网的示例:https://github.com/keras-team/keras/blob/master/examples/antirectifier.py 与之前的MINST手写数字识 ...

随机推荐

  1. 数据库子查询和join的比较

    子查询进行SELECT语句嵌套查询,可以一次完成很多逻辑上需要多个步骤才能完成的SQL操作.子查询虽然很灵活,但是执行效率并不高. select goods_id,goods_name from go ...

  2. 常用jquery

    水果:<input type="checkbox" name="shuiGuo" value="2">苹果<input t ...

  3. dubbo-2.5.6优雅停机研究

    不优雅的停机: 当进程存在正在运行的线程时,如果直接执行kill -9 pid时,那么这个正在执行的线程被中断,就好像一个机器运行中突然遭遇断电的情况,所导致的结果是造成服务调用的消费端报错,也有可能 ...

  4. mysql读写分离——中间件ProxySQL的简介与配置

    mysql实现读写分离的方式 mysql 实现读写分离的方式有以下几种: 程序修改mysql操作,直接和数据库通信,简单快捷的读写分离和随机的方式实现的负载均衡,权限独立分配,需要开发人员协助. am ...

  5. 使用signalr实现网页和微信公众号实时聊天(上)

    最近项目中需要实现客户在公众号中和客服(客服使用后台网站系统)进行实时聊天的功能.折腾了一段时间,实现了这个功能.现在将过程记录下,以便有相同需求的同行可以参考,也是自己做个总结.这篇是上,用手机编辑 ...

  6. JAVA获取微信小程序openid和获取公众号openid,以及通过openid获取用户信息

    一,首先说明下这个微信的openid 为了识别用户,每个用户针对每个公众号会产生一个安全的OpenID,如果需要在多公众号.移动应用之间做用户共通,则需前往微信开放平台,将这些公众号和应用绑定到一个开 ...

  7. 1123. Is It a Complete AVL Tree (30)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. php-fpm 配置中pm的选择

    另附豆瓣技术贴:https://www.douban.com/note/315222037/ 1.php-fpm优化参数介绍他们分别是:pm.pm.max_children.pm.start_serv ...

  9. qt字符数组转ASCII(十六进制)

    接收网络传输数据 QByteArray  array;//显示字符串 QString str = QString::fromLocal8Bit(array); m_receiveTxt.append( ...

  10. Windows下 tensorboard出现ValueError:Invalid format string

    Windows下 tensorboard出现ValueError:Invalid format string错误时,是格式错误问题,解决方法参阅我的另一篇博客 https://www.jianshu. ...