线性整流函数(ReLU)
线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元, 是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种为代表的非线性函数。比较常用的线性整流函数有斜坡函数,以及带泄露整流函数 (Leaky ReLU),其中 为神经元(Neuron)的输入。线性整流被认为有一定的生物学原理[1],并且由于在实践中通常有着比其他常用激活函数(譬如逻辑函数)更好的效果,而被如今的深度神经网络广泛使用于诸如图像识别等计算机视觉[1]人工智能领域。
定义:
通常意义下,线性整流函数指代数学中的斜坡函数,即
而在神经网络中,线性整流作为神经元的激活函数,定义了该神经元在线性变换 {\displaystyle \mathbf {w} ^{T}\mathbf {x} +b}之后的非线性输出结果。换言之,对于进入神经元的来自上一层神经网络的输入向量 {\displaystyle x},使用线性整流激活函数的神经元会输出
至下一层神经元或作为整个神经网络的输出(取决现神经元在网络结构中所处位置)。
优势:
相比于传统的神经网络激活函数,诸如逻辑函数(Logistic sigmoid)和tanh等双曲函数,线性整流函数有着以下几方面的优势:
- 仿生物学原理:相关大脑方面的研究表明生物神经元的信息编码通常是比较分散及稀疏的[6]。通常情况下,大脑中在同一时间大概只有1%-4%的神经元处于活跃状态。使用线性修正以及正则化(regularization)可以对机器神经网络中神经元的活跃度(即输出为正值)进行调试;相比之下,逻辑函数在输入为0时达到 {\displaystyle {\frac {1}{2}}},即已经是半饱和的稳定状态,不够符合实际生物学对模拟神经网络的期望[1]。不过需要指出的是,一般情况下,在一个使用修正线性单元(即线性整流)的神经网络中大概有50%的神经元处于激活态[1]。
- 更加有效率的梯度下降以及反向传播:避免了梯度爆炸和梯度消失问题
- 简化计算过程:没有了其他复杂激活函数中诸如指数函数的影响;同时活跃度的分散性使得神经网络整体计算成本下降
参考文档:
1 https://zh.wikipedia.org/wiki/%E7%BA%BF%E6%80%A7%E6%95%B4%E6%B5%81%E5%87%BD%E6%95%B0
线性整流函数(ReLU)的更多相关文章
- MATLAB——神经网络构造线性层函数linearlayer
% example5_7.m x=-:; y=*x-; randn(); % 设置种子,便于重复执行 y=y+randn(,length(y))*1.5; % 加入噪声的直线 plot(x,y,'o' ...
- * SPOJ PGCD Primes in GCD Table (需要自己推线性筛函数,好题)
题目大意: 给定n,m,求有多少组(a,b) 0<a<=n , 0<b<=m , 使得gcd(a,b)= p , p是一个素数 这里本来利用枚举一个个素数,然后利用莫比乌斯反演 ...
- matlab-非线性拟合函数lsqcurvefit的使用和初值选取
所解决问题: 我们知道我们的表达式是y=A+B*exp(-x.^2)-C./log(x), 而且现在我们手里面有x与y对应的一大把数据. 我们需要根据x, y的值找出最佳的A.B.C值.则我们现在借助 ...
- Deep Learning--week1~week3
week1 一张图片,设像素为64*64, 颜色通道为红蓝绿三通道,则对应3个64*64实数矩阵 为了用向量表示这些矩阵,将这些矩阵的像素值展开为一个向量x作为算法的输入 从红色到绿色再到蓝色,依次按 ...
- 深度解析Droupout与Batch Normalization
Droupout与Batch Normalization都是深度学习常用且基础的训练技巧了.本文将从理论和实践两个角度分布其特点和细节. Droupout 2012年,Hinton在其论文中提出Dro ...
- 干货 | 这可能全网最好的BatchNorm详解
文章来自:公众号[机器学习炼丹术].求关注~ 其实关于BN层,我在之前的文章"梯度爆炸"那一篇中已经涉及到了,但是鉴于面试经历中多次问道这个,这里再做一个更加全面的讲解. Inte ...
- 神经网络的另一种非线性阶跃函数---ReLU函数
import numpy as np import matplotlib.pylab as plt from matplotlib.font_manager import FontProperties ...
- ReLU 函数
线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元,是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种 为代 ...
- MINST手写数字识别(三)—— 使用antirectifier替换ReLU激活函数
这是一个来自官网的示例:https://github.com/keras-team/keras/blob/master/examples/antirectifier.py 与之前的MINST手写数字识 ...
随机推荐
- WCF系列_WCF影响客户端导出Excel文件的实现
需求:WCF搭建服务端提供导出并下载Excel文件接口,客户端使用ajax发起请求,浏览器直接下载Excel文件. 难点:WCF中并没有HttpContext对象,因此,服务端总是获取不到HttpCo ...
- p2p技术之n2n源码核心简单分析一
首先在开篇之前介绍下内网打洞原理 场景:一个服务器S1在公网上有一个IP,两个私网机器C1,C2 C1,C2分别由NAT1和NAT2连接到公网,我们需要借助S1将C1,C2建立直接的TCP连接,即由C ...
- 【Mybatis】MyBatis之表的关联查询(五)
本章介绍Mybatis之表的关联查询 一对一关联 查询员工信息以及员工的部门信息 1.准备表employee员工表,department部门表 CREATE TABLE `employee` ( `i ...
- dubbo入门学习 四 注册中心 zookeeper入门
一.Dubbo支持的注册中心 1. Zookeeper 1.1 优点:支持网络集群 1.2 缺点:稳定性受限于Zookeeper 2. Redis 2.1 优点:性能高. 2.2 缺点:对服务器环境要 ...
- vue中使用axios
1.结合vue-axios使用 vue-axios是按照vue插件的方式去写的,那么结合vue-axios就可以使用Vue.use()这个方法import axios from 'axios' imp ...
- idea启动springboot+jsp项目出现404
场景:用IntelliJ IDEA 启动 springBoot项目访问出现404,很皮,因为我用eclipse开发时都是正常的,找了很久,什么加注释掉<scope>provided< ...
- 去掉"You are running Vue in development mode"提示
vue项目中报错: You are running Vue in development mode.Make sure to turn on production mode when deployin ...
- openmp入门总结
Ref: https://wdxtub.com/2016/03/20/openmp-guide/ 简介 这门课作为 ECE 中少有的跟计算机科学相关的课,自然是必上不可.不过无论是 OpenMP 还是 ...
- 非交互式一句话添加root用户
useradd -p `openssl passwd -1 -salt ‘lsof’ admin123` -u 0 -o -g root -G root -s /bin/bash -d /usr/bi ...
- AIX X11卡顿严重
在AIX上安装数据库,使用xshell开启dbca,发现卡顿严重,数据包也时断时续,排除掉网络问题,发现字符集采用的是中文,发现ftp服务业异常,将字符集修改成英语,重启机器,问题解决: 修改如下: ...