上个月在网上看到一个用web实现简单AR效果的文章,然后自己一路折腾,最后折腾出来一个 Asp.net+WebSocket+Emgucv实时人脸识别的东西,网上也有不少相关资料,有用winform的也有asp.net的。其实人脸识别技术早就成熟了,就是没机会接触这方面。百度了一下 找到好多,JqueryFaceDetection,face++,face core,opencv,emgucv等等,这些我都折腾了一遍,并不能很好的满足我的需求,我就是想像手机QQ里边的拍照的时候能识别到人脸并且对图像做一些处理。后来找到了一个用winform+emgucv实现的例子,我就想着怎么给弄web上。后来又看到一篇用websocket实现的例子,就结合了一下。

我自己做的这个有相当多的代码都是网上的直接拿来用了,对我来说,websocket和emgucv这两个东西都是第一次接触,有不少的坑,尤其这个emgucv!!,各个版本差别巨大,从2.4到3.2这几个版本我几乎都下载过,最终是用的3.1的。好了,下面进入正题,源码我已经放在github了,https://github.com/13005463562/FaceWeb 。其中NewFaceWeb是web端,NewFace是服务端。想试一下效果的可以戳这里(要用火狐浏览器,谷歌太坑,强制要用https才能打开摄像头,其他浏览器还存在兼容性问题,其实一些手机浏览器UC或者火狐也行,但是我不会调样式。:( ,对于没有录入姓名的人呢,只能出现一个方框,可以点截图(等你的脸出现方框的时候截图),然后录入你的姓名,就可以把你的名字也识别出来。

  一.整体介绍

首先下载emgucv3.1,我下载的是第一个297M那个。下载之后解压,需要用到bin下的x64文件夹,注意不是根目录下的x64。 Emgu.CV.Example 里边有一些关于emgucv的例子,都是按照那个写的代码,可以看看。

在前端利用canvas获取摄像头的图像信息,通过websocket把每一帧数据传到服务端,服务端拿到的是byte[]数据,要转换成需要的格式再识别到你的脸,然后去人脸训练库中比较,找出最像你的那个样本的姓名(相似度太低则为空),最后把你的脸的位置(左上角坐标和宽高)和姓名返回前端。前端拿到返回数据,在canvas上画出方框和姓名,ok,完事。

 二.前端实现

首先是html代码,使用H5中的video和canvas:

 <div>
<div id='frame' style="position:relative;">
<video style='position:absolute;top:0px;left:0px;z-index:2;' id="live" width="320" height="240" autoplay></video>
<canvas style='position:absolute;top:242px;left:0px; z-index:170;' width="320" id="canvasFace" height="240"></canvas>
<canvas style='position:absolute;top:242px;left:0px; z-index:11;' width="320" id="canvas" height="240"></canvas>
</div>
</div>

接着放js代码(从别人那搬来的=-=), 先是要打开摄像头,打开成功了就开启websocket,把一帧图像数据转成base64形式顺便压缩一下,压缩很重要,在本机测无所谓,但要放服务器网络延迟太高,每次前后台交互一两秒。。。压缩比0.5即可把延迟降低到300-400毫秒,这样就很流畅啦.

  $(function () {
var video = $('#live').get()[0],
canvas = $('#canvas'),
ctx = canvas.get()[0].getContext('2d'),
canvasFace = $('#canvasFace'),
//canvasFace1 = document.getElementById("canvasFace");
ctx2 = canvasFace.get()[0].getContext('2d'),
canSend = true; if (navigator.getUserMedia) { // Standard
navigator.getUserMedia({ "video": true }, function (stream) {
video.src = webkitURL.createObjectURL(stream);
// video.play();
startWS();
}, errBack);
} else if (navigator.webkitGetUserMedia) { // WebKit-prefixed
navigator.webkitGetUserMedia({ "video": true }, function (stream) {
video.src = window.webkitURL.createObjectURL(stream);
// video.play();
startWS();
}, errBack);
}
else if (navigator.mozGetUserMedia) { // Firefox-prefixed
navigator.mozGetUserMedia({ "video": true }, function (stream) {
video.src = window.URL.createObjectURL(stream);
//video.play();
startWS();
}, errBack);
}; function errBack() {
console.log('err');
} var _draw = function (pArr) {
canvasFace[0].height = canvasFace[0].height;//重设height以清除画布
ctx2.strokeStyle = "#EEEE00";
ctx2.fillStyle = 'rgba(0,0,0,0.0)';
ctx2.lineWidth = 2; //设置字体样式
ctx2.font = "30px Courier New";
//设置字体填充颜色
ctx2.fillStyle = "red";
//ctx2.clearRect(0, 0, 320, 240);
if (pArr == "[]") {
return;
} var obj = $.parseJSON(pArr);
for (var i = 0, l = obj.length; i < l; i++) { var left = obj[i].X; //左上角x坐标
var top = obj[i].Y;//左上角y坐标
var width = obj[i].W; //宽
var height = obj[i].H;//高
var name = obj[i].N;//姓名 //画方框
ctx2.moveTo(left, top);
ctx2.lineTo(left + width, top);
ctx2.lineTo(left + width, top + height);
ctx2.lineTo(left, top + height);
ctx2.lineTo(left, top);
ctx2.stroke(); //从坐标点(50,50)开始绘制姓名
ctx2.fillText(name, left - 30, top - 30);
} }; var startWS = function () {
var ws = new WebSocket("ws://119.23.237.231:8082/Handler/GetFacePosition.ashx");
ws.onopen = function () {
console.log('Opened WS!'); };
ws.onmessage = function (msg) {
_draw(msg.data);
canSend = true; //记录每次连接的时间
//var timestamp = new Date().getTime();
//console.log("end=" + timestamp);
};
ws.onclose = function (msg) {
console.log('socket close!');
};
var timer = setInterval(function () {
ctx.drawImage(video, 0, 0, 320, 240);
if (ws.readyState == WebSocket.OPEN && canSend) {
canSend = false;
var data = canvas.get()[0].toDataURL('image/jpeg', 0.5), //把画布转base64 压缩比例0.5
newblob = dataURItoBlob(data); ws.send(newblob);
//ws.send("123");
}
}, 60);
};
});

function dataURItoBlob(dataURI) {
                  var byteString = atob(dataURI.split(',')[1]),
                  mimeString = dataURI.split(',')[0].split(':')[1].split(';')[0],
                  ab = new ArrayBuffer(byteString.length),
                  ia = new Uint8Array(ab);
                  for (var i = 0; i < byteString.length; i++) {
                               ia[i] = byteString.charCodeAt(i);
                            }
                   return new Blob([ab], { type: mimeString });
                  }

 

前端大概就这样子了,发送数据,接收数据,画图。仔细看一下,挺简单的。

二.服务端实现

服务端相对要复杂点了,我就大致讲一下怎么处理的,说说遇到的一些坑,详细的实现看源码就行了。

我用的asp.net MVC,需要引用emgucv的一些dll,Emgu.CV.UI,Emgu.CV.World,ZedGraph  ,这些在下载的emgucv中bin目录下都能找到,找不到就是版本下载错了。

首先当然是接收数据,用ashx实现的,rootPath是根目录路径,到时候需要把人脸样本(也就是你录入的脸的图像)文件夹放在项目根目录,还有一个人脸分类器的xml文件,也放在根目录。在调用emgucv的方法时会用到。

        private static string rootPath;
private int _maxBufferSize = 256 * 1024; public void ProcessRequest(HttpContext context)
{ if (context.IsWebSocketRequest)
{
rootPath = context.Request.PhysicalApplicationPath; context.AcceptWebSocketRequest(ProcessWSChat);
}
}

接着是实现websocket的代码,我就不多说了,还是搬代码:

private async Task ProcessWSChat(AspNetWebSocketContext context)
{
try
{
WebSocket socket = context.WebSocket; byte[] receiveBuffer = new byte[_maxBufferSize];
ArraySegment<byte> buffer = new ArraySegment<byte>(receiveBuffer); while (socket.State == WebSocketState.Open)
{
WebSocketReceiveResult result = await socket.ReceiveAsync(buffer, CancellationToken.None); if (result.MessageType == WebSocketMessageType.Close)
{
await socket.CloseAsync(
result.CloseStatus.GetValueOrDefault(),
result.CloseStatusDescription,
CancellationToken.None);
break;
} int offset = result.Count; while (result.EndOfMessage == false)
{
result = await socket.ReceiveAsync(new ArraySegment<byte>(receiveBuffer, offset, _maxBufferSize - offset), CancellationToken.None);
offset += result.Count;
} if (result.MessageType == WebSocketMessageType.Binary && offset != 0)
{ ArraySegment<byte> newbuff = new ArraySegment<byte>(Encoding.UTF8.GetBytes(FaceDetectionDetail(receiveBuffer, offset)));
await socket.SendAsync(newbuff, WebSocketMessageType.Text, true, CancellationToken.None); }
}
}
catch (Exception e)
{
var err = e.Message;
Com.Other.AddLog(err);
}
}

然后是调方法得到人脸数据,可以是多个脸,这里的把byte[]转Mat可是费了我好大功夫,最开始找不到简单的方法,只能傻乎乎生成图片到本地再去读取,效率低下,最终是在一个英语网站(讲真。。英语水平太低,都是蒙的)里边找到这个方法:

  private static string FaceDetectionDetail(byte[] data, int plength)
{
StringBuilder sb = new StringBuilder();
sb.Append("["); //把byte[]转成mat 找了好久找到的方法
Image img =Com.Other. GetImageByBytes(data);
Bitmap bmpImage = new Bitmap(img);
Emgu.CV.Image<Bgr, Byte> currentFrame = new Emgu.CV.Image<Bgr, Byte>(bmpImage);
Mat invert = new Mat();
CvInvoke.BitwiseAnd(currentFrame, currentFrame, invert); if (invert != null)
{
Com.KingFaceDetect.faceDetectedObj faces = Run1(invert); //得到识别到的脸
for (int i = 0; i < faces.facesRectangle.Count; i++)
{
sb.AppendFormat("{{\"X\":{0},\"Y\":{1},\"W\":{2},\"H\":{3},\"N\":\"{4}\"}},", faces.facesRectangle[i].X, faces.facesRectangle[i].Y, faces.facesRectangle[i].Width, faces.facesRectangle[i].Height, faces.names[i]);
} if (sb[sb.Length - 1] == ',')
{
sb.Remove(sb.Length - 1, 1);
} } sb.Append("]"); GC.Collect();
//AddLog((System.Environment.TickCount - aa).ToString()); //单位毫秒
return sb.ToString();
}

再来看一下Run1这个方法,返回值是一个faceDetectedObj类型的,这是自己封装的一个类KingFaceDetect中的东西,它包含了识别的的脸部的坐标和这个人的姓名,从之前提到的winform版本中提出来的,基本没改。可以看到这里用了一个Application,因为在创建KingFaceDetect的时候会去加载人脸样本库,比较耗内存把,第一次没用全局,然后服务器都被搞崩了。

 static Com.KingFaceDetect.faceDetectedObj Run1(Mat image)
{ if (HttpContext.Current.Application["detect"] == null)
{
HttpContext.Current.Application["detect"] = new Com.KingFaceDetect(); //存入全局 否则好像会报内存错误
}
Com.KingFaceDetect detect = (Com.KingFaceDetect)HttpContext.Current.Application["detect"];
Com.KingFaceDetect.faceDetectedObj resut = detect.faceRecognize(image); return resut;
}

接下来就是这个核心的类了,KingFaceDetect  ,里边都有注释,懒得讲。。。。直接搬上来:,,在对比训练库得到姓名那一步,有个Distance,值越小越可能是同一个人,我自己改了下,大于4000就当没有,姓名返回“”。

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text; using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Structure;
using Emgu.Util;
using Emgu.CV.Cuda;
using System.Diagnostics;
using Emgu.CV.UI;
using System.Drawing;
using System.IO; namespace NewFace.Com
{
class KingFaceDetect
{
private string FaceSamplesPath =System.Web.HttpContext.Current. Server.MapPath("~/") + "\\trainedFaces"; //这个是训练库文件夹 需要手动复制到项目根目录下
private CascadeClassifier faceClassifier = new CascadeClassifier(System.Web.HttpContext.Current. Server.MapPath("~/")+"\\haarcascade_frontalface_default.xml"); //这个文件也放根目录
TrainedFaceRecognizer tfr; public KingFaceDetect()
{
SetTrainedFaceRecognizer(FaceRecognizerType.EigenFaceRecognizer);
} /// <summary>
/// 获取已保存的所有样本文件
/// </summary>
/// <returns></returns>
public TrainedFileList SetSampleFacesList()
{
TrainedFileList tf = new TrainedFileList();
DirectoryInfo di = new DirectoryInfo(FaceSamplesPath);
int i = 0;
foreach (FileInfo fi in di.GetFiles())
{
tf.trainedImages.Add(new Image<Gray, byte>(fi.FullName));
tf.trainedLabelOrder.Add(i);
tf.trainedFileName.Add(fi.Name.Split('_')[0]);
i++;
}
return tf;
} /// <summary>
/// 训练人脸识别器
/// </summary>
/// <param name="type"></param>
/// <returns></returns>
public TrainedFaceRecognizer SetTrainedFaceRecognizer(FaceRecognizerType type)
{
tfr = new TrainedFaceRecognizer();
tfr.trainedFileList = SetSampleFacesList(); switch (type)
{
case FaceRecognizerType.EigenFaceRecognizer:
tfr.faceRecognizer = new Emgu.CV.Face.EigenFaceRecognizer(80, double.PositiveInfinity); break;
case FaceRecognizerType.FisherFaceRecognizer:
tfr.faceRecognizer = new Emgu.CV.Face.FisherFaceRecognizer(80, 3500);
break;
case FaceRecognizerType.LBPHFaceRecognizer:
tfr.faceRecognizer = new Emgu.CV.Face.LBPHFaceRecognizer(1, 8, 8, 8, 100);
break;
}
tfr.faceRecognizer.Train(tfr.trainedFileList.trainedImages.ToArray(), tfr.trainedFileList.trainedLabelOrder.ToArray());
return tfr;
} /// <summary>
/// 获取制定图片,识别出的人脸矩形框
/// </summary>
/// <param name="emguImage"></param>
/// <returns></returns>
public faceDetectedObj GetFaceRectangle(Mat emguImage)
{
faceDetectedObj fdo = new faceDetectedObj();
fdo.originalImg = emguImage;
List<Rectangle> faces = new List<Rectangle>();
try
{
using (UMat ugray = new UMat())
{
CvInvoke.CvtColor(emguImage, ugray, Emgu.CV.CvEnum.ColorConversion.Bgr2Gray);//灰度化图片
CvInvoke.EqualizeHist(ugray, ugray);//均衡化灰度图片 Rectangle[] facesDetected = faceClassifier.DetectMultiScale(ugray, 1.1, 10, new Size(20, 20));
faces.AddRange(facesDetected);
}
}
catch (Exception ex)
{
}
fdo.facesRectangle = faces; return fdo;
} /// <summary>
/// 人脸识别
/// </summary>
/// <param name="emguImage"></param>
/// <returns></returns>
public faceDetectedObj faceRecognize(Mat emguImage)
{
faceDetectedObj fdo = GetFaceRectangle(emguImage);
Image<Gray, byte> tempImg = fdo.originalImg.ToImage<Gray, byte>();
#region 给识别出的所有人脸画矩形框
using (Graphics g = Graphics.FromImage(fdo.originalImg.Bitmap))
{
foreach (Rectangle face in fdo.facesRectangle)
{ Image<Gray, byte> GrayFace = tempImg.Copy(face).Resize(100, 100, Emgu.CV.CvEnum.Inter.Cubic);
GrayFace._EqualizeHist();//得到均衡化人脸的灰度图像 #region 得到匹配姓名
Emgu.CV.Face.FaceRecognizer.PredictionResult pr = tfr.faceRecognizer.Predict(GrayFace);
string name = ""; //Distance越小表示 越可能是同一个人
if (pr.Distance <4000)
{
name = tfr.trainedFileList.trainedFileName[pr.Label].ToString();
} #endregion
fdo.names.Add(name);
}
} #endregion
return fdo;
} #region 自定义类及访问类型
public class TrainedFileList
{
public List<Image<Gray, byte>> trainedImages = new List<Image<Gray, byte>>();
public List<int> trainedLabelOrder = new List<int>();
public List<string> trainedFileName = new List<string>();
} public class TrainedFaceRecognizer
{
public Emgu.CV.Face.FaceRecognizer faceRecognizer;
public TrainedFileList trainedFileList;
} public class faceDetectedObj
{
public Mat originalImg;
public List<Rectangle> facesRectangle;
public List<string> names = new List<string>();
} public enum FaceRecognizerType
{
EigenFaceRecognizer = 0,
FisherFaceRecognizer = 1,
LBPHFaceRecognizer = 2,
}; #endregion
} }

OK,核心代码都齐了,但是你想点击Debug来跑一个那还不行,,你会发现在调用emgucv的时候会报错:

“Emgu.CV.CvInvoke”的类型初始值设定项引发异常 !!!!!!!!!

就是这个异常,几乎伴随整个项目,关于这个异常,稍后我再总结一下。在代码都完事的时候在vs上跑不起来,很伤心啊,,很绝望,,想了好久好久,会不会是vs根本就没把x64文件夹下的dll加载起来?,把项目发布到iis上跑了一下,居然成功了!别提我有多鸡冻了。所以呢,就不在vs上调试了,直接放服务器上跑,在慢慢调试。下面是发布后的样子:

  二.总结

1.对于上边提到的那个异常,首先是和.net版本有关,当时我先整的winform版的人脸识别,用的.net4.5,就报那个异常,一直降级降到3.5才ok。但是在写web服务端的时候,用的.net4.5却又完全没问题。我也很蒙。还有一个原因就是之前提到的x64文件夹,要把整个文件夹放到应用程序的bin目录下(把整个文件夹放进去就行,不要把里边的dll复制出来到bin下),大概700多M。

2.emgucv各个版本差别较大,在这个版本能用的代码,到其他版本可能根本用不了。

暂时先这些吧,有什么疏忽的以后再补上。本来还想用Xamarin.Android做个安卓app的,但是。。。好难啊,就一个socket就遇到了麻烦。有懂Xamarin的大神能指点指点吗?

Asp.net+WebSocket+Emgucv实时人脸识别的更多相关文章

  1. 使用dlib中的深度残差网络(ResNet)实现实时人脸识别

    opencv中提供的基于haar特征级联进行人脸检测的方法效果非常不好,本文使用dlib中提供的人脸检测方法(使用HOG特征或卷积神经网方法),并使用提供的深度残差网络(ResNet)实现实时人脸识别 ...

  2. Opencv摄像头实时人脸识别

    Introduction 网上存在很多人脸识别的文章,这篇文章是我的一个作业,重在通过摄像头实时采集人脸信息,进行人脸检测和人脸识别,并将识别结果显示在左上角. 利用 OpenCV 实现一个实时的人脸 ...

  3. c# 利用AForge和百度AI开发实时人脸识别

    baiduAIFaceIdentify项目是C#语言,集成百度AI的SDK利用AForge开发的实时人脸识别的小demo,里边包含了人脸检测识别,人脸注册,人脸登录等功能 人脸实时检测识别功能 思路是 ...

  4. face_recognition实时人脸识别

    具体安装移步:https://www.cnblogs.com/ckAng/p/10981025.html 更多操作移步:https://github.com/ageitgey/face_recogni ...

  5. Python 3 利用 Dlib 19.7 实现摄像头人脸识别

    0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地: 根据抠取的 ...

  6. TensorFlow人脸识别

    TensorFlow框架做实时人脸识别小项目(一)https://blog.csdn.net/Goerge_L/article/details/80208297 TensorFlow框架做实时人脸识别 ...

  7. Python3利用Dlib19.7实现摄像头人脸识别的方法

    0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地,然后提取构建 ...

  8. html5与EmguCV前后端实现——人脸识别篇(一)

    上个月因为出差的关系,断更了很久,为了补偿大家长久的等待,送上一个新的系列,之前几个系列也会抽空继续更新. 大概半年多前吧,因为工作需要,我开始研究图像识别技术.OpenCV在这方面已经有了很多技术积 ...

  9. asp.net 虹软 人脸识别 实现刷脸住宿、刷脸签到、刷脸进入等

    先看看效果图,我把demo改成自动运行了,暂时借用别人的图片: 最左侧的大图为选择上传的, 中间的小图是大图的脸, 右侧的大图是人脸文件夹中已经存在的,并且相似度较高的一张脸,也就是比对的结果. 先记 ...

随机推荐

  1. 网络文件系统(NFS)简介

    网络文件系统(Network File System, NFS)是一种分布式文件系统协议,最初由Sun Microsystems公司开发,并于1984年发布.其功能旨在允许客户端主机可以像访问本地存储 ...

  2. [算法进阶0x10]基本数据结构C作业总结

    t1-Supermarket 超市利润 题目大意 给定n个商品,每个商品有利润pi和过期时间di.每天只能卖一个商品,过期商品不能卖.求如何安排每天卖的商品可以使收益最大. 分析 一开始打了一个复杂度 ...

  3. Python变量与赋值

    Python是一门独特的语言,与C语言有很大区别,初学Python很多萌新表示对变量与赋值不理解,学过C的都知道,给变量赋值时,需要先指定数据类型,同时会开辟一块内存区域,用于存储值,例如: int ...

  4. MVC使用记录

    如何获得MVC中,控制器和方法名字.这可以用于给当前选定菜单加个选定样式 获取控制器名称:(在View中写法) ViewContext.RouteData.Values["controlle ...

  5. [TJOI2012]桥(最短路+线段树)

    有n个岛屿, m座桥,每座桥连通两座岛屿,桥上会有一些敌人,玩家只有消灭了桥上的敌人才能通过,与此同时桥上的敌人会对玩家造成一定伤害.而且会有一个大Boss镇守一座桥,以玩家目前的能力,是不可能通过的 ...

  6. 通过WebChannel/WebSockets与QML中的HTML交互

    来源:通过WebChannel/WebSockets与QML中的HTML交互 GitHub:八至 作者:狐狸家的鱼 本文链接:QML与HTML交互 在查询QML与HTML之间通信交互时资料很少,这篇文 ...

  7. bzoj3900 交换茸角

    题目链接 思路 看到n比较小,可以状压. 可以先考虑什么情况下会无法平衡.显然就是排完序之后两两相邻的不能满足小于等于c的限制. 状态.用f[i]来表示i集合中的鹿完成交换所需要的次数. 预处理.无法 ...

  8. 对C# .Net4.5异步机制测试

    static void Main(string[] args) { Test(); // 这个方法其实是多余的, 本来可以直接写下面的方法 // await GetName() // 但是由于控制台的 ...

  9. eclipse+pyDev

    感觉python脚本语言在linux下挺有用的,想入门学习一下 新手入门个人习惯找个好点的IDE帮助完成工作,试了好多,如pycharm,sublime text自己打造 后来发现全扯淡,一点不符合自 ...

  10. 跨域技术(JSONP与CROS)

    JSONP 我们发现,Web页面上调用js文件时不受是否跨域的影响,凡是拥有"src"这个属性的标签都拥有跨域的能力,比如<script>.<img>.&l ...