下面的RNN,LSTM,GRU模型图来自这里
简单的综述

1. RNN


图1.1 标准RNN模型的结构


2. BiRNN


3. LSTM


图3.1 LSTM模型的结构


4. Clockwork RNN

5. Depth Gated RNN

6. Grid LSTM

7. DRAW

8. RLVM


9. GRU


图9.1 GRU模型的结构


10. NTM


11. QRNN


图11.1 f-pooling时候的QRNN结构图

图11.2 fo-pooling时候的QRNN结构图

图11.3 ifo-pooling时候的QRNN结构图
点这里,QRNN


12. Persistent RNN


13. SRU


图13.1 SRU模型的结构
点这里,SRU


参考文献

  1. [RNN&Depth] - Pascanu R, Gulcehre C, Cho K, et al. How to construct deep recurrent neural networks[J]. arXiv preprint arXiv:1312.6026, 2013.
  2. [survey] - Lipton Z C, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning[J]. arXiv preprint arXiv:1506.00019, 2015.
    .. [survey] - Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network architectures[C]//Proceedings of the 32nd International Conference on Machine Learning (ICML-15). 2015: 2342-2350.
    .. [survey] - Greff K, Srivastava R K, Koutník J, et al. LSTM: A search space odyssey[J]. IEEE transactions on neural networks and learning systems, 2017.
    .. [survey] - Karpathy A, Johnson J, Fei-Fei L. Visualizing and understanding recurrent networks[J]. arXiv preprint arXiv:1506.02078, 2015.
  3. [RNN] - Elman, Jeffrey L. “Finding structure in time.” Cognitive science 14.2 (1990): 179-211.
  4. [BiRNN] - Schuster, Mike, and Kuldip K. Paliwal. “Bidirectional recurrent neural networks.” IEEE Transactions on Signal Processing 45.11 (1997): 2673-2681.
  5. [LSTM] - Hochreiter, Sepp, and Jürgen Schmidhuber. “Long short-term memory.” Neural computation 9.8 (1997): 1735-1780
    .. [LSTM] - 理解 LSTM 网络
    .. [LSTM Variants] - Gers F A, Schmidhuber J. Recurrent nets that time and count[C]//Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on. IEEE, 2000, 3: 189-194.
  6. [Multi-dimensional RNN] - Alex Graves, Santiago Fernandez, and Jurgen Schmidhuber, Multi-Dimensional Recurrent Neural Networks, ICANN 2007
  7. [GFRNN] - Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio, Gated Feedback Recurrent Neural Networks, arXiv:1502.02367 / ICML 2015
  8. [Tree-Structured RNNs] - Kai Sheng Tai, Richard Socher, and Christopher D. Manning, Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, arXiv:1503.00075 / ACL 2015
    .. [Tree-Structured RNNs] - Samuel R. Bowman, Christopher D. Manning, and Christopher Potts, Tree-structured composition in neural networks without tree-structured architectures, arXiv:1506.04834
  9. [Clockwork RNN] - Koutník J, Greff K, Gomez F, et al. A Clockwork RNN[J]. arXiv preprint arXiv:1402.3511, 2014.
  10. [Depth Gated RNN] - Yao K, Cohn T, Vylomova K, et al. Depth-gated recurrent neural networks[J]. arXiv preprint, 2015.
  11. [Grid LSTM] - Kalchbrenner N, Danihelka I, Graves A. Grid long short-term memory[J]. arXiv preprint arXiv:1507.01526, 2015.
  12. [Segmental RNN] - Lingpeng Kong, Chris Dyer, Noah Smith, "Segmental Recurrent Neural Networks", ICLR 2016.
  13. [Seq2seq for Sets ] - Oriol Vinyals, Samy Bengio, Manjunath Kudlur, "Order Matters: Sequence to sequence for sets", ICLR 2016.
  14. [Hierarchical Recurrent Neural Networks] - Junyoung Chung, Sungjin Ahn, Yoshua Bengio, "Hierarchical Multiscale Recurrent Neural Networks", arXiv:1609.01704
  15. [DRAW] - Gregor K, Danihelka I, Graves A, et al. DRAW: A recurrent neural network for image generation[J]. arXiv preprint arXiv:1502.04623, 2015.
  16. [RLVM] - Chung J, Kastner K, Dinh L, et al. A recurrent latent variable model for sequential data[C]//Advances in neural information processing systems. 2015: 2980-2988.
  17. [Generate] - Bayer J, Osendorfer C. Learning stochastic recurrent networks[J]. arXiv preprint arXiv:1411.7610, 2014.
  18. [GRU] - Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.
    .. [GRU] - Cho K, Van Merriënboer B, Bahdanau D, et al. On the properties of neural machine translation: Encoder-decoder approaches[J]. arXiv preprint arXiv:1409.1259, 2014.
    .. [GRU] - Chung, Junyoung, et al. “Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:1412.3555 (2014).
  19. [NTM] - Graves, Alex, Greg Wayne, and Ivo Danihelka. “Neural turing machines.” arXiv preprint arXiv:1410.5401 (2014).
  20. [Neural GPU] - Łukasz Kaiser, Ilya Sutskever, arXiv:1511.08228 / ICML 2016 (under review)
  21. [QRNN] - Bradbury J, Merity S, Xiong C, et al. Quasi-recurrent neural networks[J]. arXiv preprint arXiv:1611.01576, 2016.
  22. [Memory Network] - Jason Weston, Sumit Chopra, Antoine Bordes, Memory Networks, arXiv:1410.3916
  23. [Pointer Network] - Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly, Pointer Networks, arXiv:1506.03134 / NIPS 2015
  24. [Deep Attention Recurrent Q-Network] - Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, Anastasiia Ignateva, Deep Attention Recurrent Q-Network , arXiv:1512.01693
  25. [Dynamic Memory Networks] - Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor Zhong, Romain Paulus, Richard Socher, "Ask Me Anything: Dynamic Memory Networks for Natural Language Processing", arXiv:1506.07285
  26. [SRU] - Lei T, Zhang Y. Training RNNs as Fast as CNNs[J]. arXiv preprint arXiv:1709.02755, 2017.
  27. [知乎] - 如何评价新提出的RNN变种SRU
  28. [attention] - Xu K, Ba J, Kiros R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//International Conference on Machine Learning. 2015: 2048-2057.
  29. [Persistent RNN] - Diamos G, Sengupta S, Catanzaro B, et al. Persistent rnns: Stashing recurrent weights on-chip[C]//International Conference on Machine Learning. 2016: 2024-2033.
    .. [Persistent RNN] - Diamos G, Sengupta S, Catanzaro B, et al. Persistent RNNs: Stashing Weights on Chip[J]. 2016.
  30. [github] - Awesome Recurrent Neural Networks.

Recurrent Neural Network[Content]的更多相关文章

  1. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  2. Recurrent Neural Network(循环神经网络)

    Reference:   Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...

  3. Recurrent Neural Network系列2--利用Python,Theano实现RNN

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  4. Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...

  5. Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM

    yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...

  6. 循环神经网络(Recurrent Neural Network,RNN)

    为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定, ...

  7. Recurrent Neural Network[survey]

    0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...

  8. 【NLP】Recurrent Neural Network and Language Models

    0. Overview What is language models? A time series prediction problem. It assigns a probility to a s ...

  9. 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 1.Programming assignments:Building a recurrent neural network - step by step

    Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In thi ...

随机推荐

  1. 李飞飞确认将离职!谷歌云AI总帅换人,卡耐基·梅隆老教授接棒

    https://mp.weixin.qq.com/s/i1uwZALu1BcOq0jAMvPdBw 看点:李飞飞正式回归斯坦福,新任谷歌云AI总帅还是个教授,不过这次是全职. 智东西9月11日凌晨消息 ...

  2. Linux技术图谱

  3. 图说OOP基础(一)

    本文用图形化的形式描述OOP的相关知识.对OOP进行系统化的梳理,以便掌握,仅供学习分享使用,如有不足之处,还请指正. 涉及知识点: OOP的相关知识 OOP知识总图 [Object-Orientat ...

  4. Angular调用Asp.net Core JWT Authentication接口

    基本思路是调用登录接口,获取token,使用token请求其他JWT接口: getHomeDetails(): Observable<HomeDetails> { let headers ...

  5. 结对编程--四则运算(Java)萧英杰 夏浚杰

    结对编程--四则运算(Java)萧英杰 夏浚杰 Github项目地址 功能要求 题目:实现一个自动生成小学四则运算题目的命令行程序 使用 -n 参数控制生成题目的个数(实现) 使用 -r 参数控制题目 ...

  6. java----八种排序算法

    1.直接插入排序 经常碰到这样一类排序问题:把新的数据插入到已经排好的数据列中. 将第一个数和第二个数排序,然后构成一个有序序列 将第三个数插入进去,构成一个新的有序序列. 对第四个数.第五个数……直 ...

  7. Spring扫面路径配置不全导致异常 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): 的原因

    运行Junit测试类 package cn.bgodata.x.zero.service; import org.junit.Test; import org.junit.runner.RunWith ...

  8. MySQL数据库有哪些安全相关的参数需要修改?

    https://dev.mysql.com/doc/refman/5.7/en/security-options.htmlhttps://dev.mysql.com/doc/refman/5.7/en ...

  9. 转:EditPuls 5.0 注册码

    EditPlus5.0注册码 注册名 Vovan 注册码 3AG46-JJ48E-CEACC-8E6EW-ECUAW EditPlus3.x注册码 EditPlus注册码生成器链接 http://ww ...

  10. sql 重复数据查询

    具体代码: ); ORDER BY tcount DESC;