Recurrent Neural Network[Content]
1. RNN

图1.1 标准RNN模型的结构
2. BiRNN
3. LSTM

图3.1 LSTM模型的结构
4. Clockwork RNN
5. Depth Gated RNN
6. Grid LSTM
7. DRAW
8. RLVM
9. GRU

图9.1 GRU模型的结构
10. NTM
11. QRNN

图11.1 f-pooling时候的QRNN结构图

图11.2 fo-pooling时候的QRNN结构图

图11.3 ifo-pooling时候的QRNN结构图
点这里,QRNN
12. Persistent RNN
13. SRU

图13.1 SRU模型的结构
点这里,SRU
参考文献:
- [RNN&Depth] - Pascanu R, Gulcehre C, Cho K, et al. How to construct deep recurrent neural networks[J]. arXiv preprint arXiv:1312.6026, 2013.
- [survey] - Lipton Z C, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning[J]. arXiv preprint arXiv:1506.00019, 2015.
.. [survey] - Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network architectures[C]//Proceedings of the 32nd International Conference on Machine Learning (ICML-15). 2015: 2342-2350.
.. [survey] - Greff K, Srivastava R K, Koutník J, et al. LSTM: A search space odyssey[J]. IEEE transactions on neural networks and learning systems, 2017.
.. [survey] - Karpathy A, Johnson J, Fei-Fei L. Visualizing and understanding recurrent networks[J]. arXiv preprint arXiv:1506.02078, 2015. - [RNN] - Elman, Jeffrey L. “Finding structure in time.” Cognitive science 14.2 (1990): 179-211.
- [BiRNN] - Schuster, Mike, and Kuldip K. Paliwal. “Bidirectional recurrent neural networks.” IEEE Transactions on Signal Processing 45.11 (1997): 2673-2681.
- [LSTM] - Hochreiter, Sepp, and Jürgen Schmidhuber. “Long short-term memory.” Neural computation 9.8 (1997): 1735-1780
.. [LSTM] - 理解 LSTM 网络
.. [LSTM Variants] - Gers F A, Schmidhuber J. Recurrent nets that time and count[C]//Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on. IEEE, 2000, 3: 189-194. - [Multi-dimensional RNN] - Alex Graves, Santiago Fernandez, and Jurgen Schmidhuber, Multi-Dimensional Recurrent Neural Networks, ICANN 2007
- [GFRNN] - Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio, Gated Feedback Recurrent Neural Networks, arXiv:1502.02367 / ICML 2015
- [Tree-Structured RNNs] - Kai Sheng Tai, Richard Socher, and Christopher D. Manning, Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, arXiv:1503.00075 / ACL 2015
.. [Tree-Structured RNNs] - Samuel R. Bowman, Christopher D. Manning, and Christopher Potts, Tree-structured composition in neural networks without tree-structured architectures, arXiv:1506.04834 - [Clockwork RNN] - Koutník J, Greff K, Gomez F, et al. A Clockwork RNN[J]. arXiv preprint arXiv:1402.3511, 2014.
- [Depth Gated RNN] - Yao K, Cohn T, Vylomova K, et al. Depth-gated recurrent neural networks[J]. arXiv preprint, 2015.
- [Grid LSTM] - Kalchbrenner N, Danihelka I, Graves A. Grid long short-term memory[J]. arXiv preprint arXiv:1507.01526, 2015.
- [Segmental RNN] - Lingpeng Kong, Chris Dyer, Noah Smith, "Segmental Recurrent Neural Networks", ICLR 2016.
- [Seq2seq for Sets ] - Oriol Vinyals, Samy Bengio, Manjunath Kudlur, "Order Matters: Sequence to sequence for sets", ICLR 2016.
- [Hierarchical Recurrent Neural Networks] - Junyoung Chung, Sungjin Ahn, Yoshua Bengio, "Hierarchical Multiscale Recurrent Neural Networks", arXiv:1609.01704
- [DRAW] - Gregor K, Danihelka I, Graves A, et al. DRAW: A recurrent neural network for image generation[J]. arXiv preprint arXiv:1502.04623, 2015.
- [RLVM] - Chung J, Kastner K, Dinh L, et al. A recurrent latent variable model for sequential data[C]//Advances in neural information processing systems. 2015: 2980-2988.
- [Generate] - Bayer J, Osendorfer C. Learning stochastic recurrent networks[J]. arXiv preprint arXiv:1411.7610, 2014.
- [GRU] - Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.
.. [GRU] - Cho K, Van Merriënboer B, Bahdanau D, et al. On the properties of neural machine translation: Encoder-decoder approaches[J]. arXiv preprint arXiv:1409.1259, 2014.
.. [GRU] - Chung, Junyoung, et al. “Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:1412.3555 (2014). - [NTM] - Graves, Alex, Greg Wayne, and Ivo Danihelka. “Neural turing machines.” arXiv preprint arXiv:1410.5401 (2014).
- [Neural GPU] - Łukasz Kaiser, Ilya Sutskever, arXiv:1511.08228 / ICML 2016 (under review)
- [QRNN] - Bradbury J, Merity S, Xiong C, et al. Quasi-recurrent neural networks[J]. arXiv preprint arXiv:1611.01576, 2016.
- [Memory Network] - Jason Weston, Sumit Chopra, Antoine Bordes, Memory Networks, arXiv:1410.3916
- [Pointer Network] - Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly, Pointer Networks, arXiv:1506.03134 / NIPS 2015
- [Deep Attention Recurrent Q-Network] - Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, Anastasiia Ignateva, Deep Attention Recurrent Q-Network , arXiv:1512.01693
- [Dynamic Memory Networks] - Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor Zhong, Romain Paulus, Richard Socher, "Ask Me Anything: Dynamic Memory Networks for Natural Language Processing", arXiv:1506.07285
- [SRU] - Lei T, Zhang Y. Training RNNs as Fast as CNNs[J]. arXiv preprint arXiv:1709.02755, 2017.
- [知乎] - 如何评价新提出的RNN变种SRU
- [attention] - Xu K, Ba J, Kiros R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//International Conference on Machine Learning. 2015: 2048-2057.
- [Persistent RNN] - Diamos G, Sengupta S, Catanzaro B, et al. Persistent rnns: Stashing recurrent weights on-chip[C]//International Conference on Machine Learning. 2016: 2024-2033.
.. [Persistent RNN] - Diamos G, Sengupta S, Catanzaro B, et al. Persistent RNNs: Stashing Weights on Chip[J]. 2016. - [github] - Awesome Recurrent Neural Networks.
Recurrent Neural Network[Content]的更多相关文章
- Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Recurrent Neural Network(循环神经网络)
Reference: Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...
- Recurrent Neural Network系列2--利用Python,Theano实现RNN
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...
- Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM
yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...
- 循环神经网络(Recurrent Neural Network,RNN)
为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定, ...
- Recurrent Neural Network[survey]
0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...
- 【NLP】Recurrent Neural Network and Language Models
0. Overview What is language models? A time series prediction problem. It assigns a probility to a s ...
- 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 1.Programming assignments:Building a recurrent neural network - step by step
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In thi ...
随机推荐
- springboot 开发 Tars
1,创建 springboot 项目,并在启动类添加 @EnableTarsServer 注解 @SpringBootApplication @EnableTarsServer public clas ...
- iOS -----------Downloading core failed:
[!] /bin/bash -c set -e sh build.sh cocoapods-setup core is not a symlink. Deleting... Downloading d ...
- C#:关于C#4中IEnumerable<out T>的理解
IEnumerable<out T>这个接口非常常见,它是最基础的泛型集合接口,表示可迭代的项的序列. 但是奇怪的是为什么泛型参数要带一个“out”? 经过一番资料查阅后,发现此“out” ...
- MySQL 5.6.20-enterprise-commercial的参数文件位置问题
今天在折腾MySQL的参数文件时,突然发现MySQL 5.6.20-enterprise-commercial-advanced-log这个版本数据库的参数文件my.cnf的位置有点奇怪,如下所示: ...
- sql prompt 缩写 快捷键
快捷键代码 1. df DELETE FROM 2. ssf SELECT * FROM 3. be BEGIN END 4. ij INNER JOIN 5. ap ALTER PROCEDU ...
- eclipse maven web
在eclipse中用maven创建web项目. 环境配置 C:\Users\xxx>java -versionjava version "1.8.0_121"Java(TM) ...
- web前端(9)—— CSS属性
属性 终于到css属性,前面就零零散散的用了什么color,font-size之类,本篇博文就专项的介绍它了 字体属性 font-family 此属性是设置字体样式的,比如微软雅黑,方正书体,华文宋体 ...
- web前端(6)—— 标签的属性,分类,嵌套
属性 HTML标签可以设置属性,属性一般以键值对的方式写在开始标签中 1.HTML标签除一些特定属性外可以设置自定义属性,一个标签可以设置多个属性用空格分隔,多个属性不区分先后顺序. 2.属性值要用引 ...
- python连接sqlserver数据库
1.准备工作 python3.6连接sqlserver数据库需要引入pymssql模块 pymssql官方:https://pypi.org/project/pymssql/ 没有安装的话需要: pi ...
- 自动化测试基础篇--Selenium中数据参数化之TXT
摘自https://www.cnblogs.com/sanzangTst/p/7722594.html 一.搜索参数化 在TXT文件中保存需要搜索的内容: 测试代码: 1 #!/usr/bin/env ...