下面的RNN,LSTM,GRU模型图来自这里
简单的综述

1. RNN


图1.1 标准RNN模型的结构


2. BiRNN


3. LSTM


图3.1 LSTM模型的结构


4. Clockwork RNN

5. Depth Gated RNN

6. Grid LSTM

7. DRAW

8. RLVM


9. GRU


图9.1 GRU模型的结构


10. NTM


11. QRNN


图11.1 f-pooling时候的QRNN结构图

图11.2 fo-pooling时候的QRNN结构图

图11.3 ifo-pooling时候的QRNN结构图
点这里,QRNN


12. Persistent RNN


13. SRU


图13.1 SRU模型的结构
点这里,SRU


参考文献

  1. [RNN&Depth] - Pascanu R, Gulcehre C, Cho K, et al. How to construct deep recurrent neural networks[J]. arXiv preprint arXiv:1312.6026, 2013.
  2. [survey] - Lipton Z C, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning[J]. arXiv preprint arXiv:1506.00019, 2015.
    .. [survey] - Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network architectures[C]//Proceedings of the 32nd International Conference on Machine Learning (ICML-15). 2015: 2342-2350.
    .. [survey] - Greff K, Srivastava R K, Koutník J, et al. LSTM: A search space odyssey[J]. IEEE transactions on neural networks and learning systems, 2017.
    .. [survey] - Karpathy A, Johnson J, Fei-Fei L. Visualizing and understanding recurrent networks[J]. arXiv preprint arXiv:1506.02078, 2015.
  3. [RNN] - Elman, Jeffrey L. “Finding structure in time.” Cognitive science 14.2 (1990): 179-211.
  4. [BiRNN] - Schuster, Mike, and Kuldip K. Paliwal. “Bidirectional recurrent neural networks.” IEEE Transactions on Signal Processing 45.11 (1997): 2673-2681.
  5. [LSTM] - Hochreiter, Sepp, and Jürgen Schmidhuber. “Long short-term memory.” Neural computation 9.8 (1997): 1735-1780
    .. [LSTM] - 理解 LSTM 网络
    .. [LSTM Variants] - Gers F A, Schmidhuber J. Recurrent nets that time and count[C]//Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on. IEEE, 2000, 3: 189-194.
  6. [Multi-dimensional RNN] - Alex Graves, Santiago Fernandez, and Jurgen Schmidhuber, Multi-Dimensional Recurrent Neural Networks, ICANN 2007
  7. [GFRNN] - Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio, Gated Feedback Recurrent Neural Networks, arXiv:1502.02367 / ICML 2015
  8. [Tree-Structured RNNs] - Kai Sheng Tai, Richard Socher, and Christopher D. Manning, Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, arXiv:1503.00075 / ACL 2015
    .. [Tree-Structured RNNs] - Samuel R. Bowman, Christopher D. Manning, and Christopher Potts, Tree-structured composition in neural networks without tree-structured architectures, arXiv:1506.04834
  9. [Clockwork RNN] - Koutník J, Greff K, Gomez F, et al. A Clockwork RNN[J]. arXiv preprint arXiv:1402.3511, 2014.
  10. [Depth Gated RNN] - Yao K, Cohn T, Vylomova K, et al. Depth-gated recurrent neural networks[J]. arXiv preprint, 2015.
  11. [Grid LSTM] - Kalchbrenner N, Danihelka I, Graves A. Grid long short-term memory[J]. arXiv preprint arXiv:1507.01526, 2015.
  12. [Segmental RNN] - Lingpeng Kong, Chris Dyer, Noah Smith, "Segmental Recurrent Neural Networks", ICLR 2016.
  13. [Seq2seq for Sets ] - Oriol Vinyals, Samy Bengio, Manjunath Kudlur, "Order Matters: Sequence to sequence for sets", ICLR 2016.
  14. [Hierarchical Recurrent Neural Networks] - Junyoung Chung, Sungjin Ahn, Yoshua Bengio, "Hierarchical Multiscale Recurrent Neural Networks", arXiv:1609.01704
  15. [DRAW] - Gregor K, Danihelka I, Graves A, et al. DRAW: A recurrent neural network for image generation[J]. arXiv preprint arXiv:1502.04623, 2015.
  16. [RLVM] - Chung J, Kastner K, Dinh L, et al. A recurrent latent variable model for sequential data[C]//Advances in neural information processing systems. 2015: 2980-2988.
  17. [Generate] - Bayer J, Osendorfer C. Learning stochastic recurrent networks[J]. arXiv preprint arXiv:1411.7610, 2014.
  18. [GRU] - Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.
    .. [GRU] - Cho K, Van Merriënboer B, Bahdanau D, et al. On the properties of neural machine translation: Encoder-decoder approaches[J]. arXiv preprint arXiv:1409.1259, 2014.
    .. [GRU] - Chung, Junyoung, et al. “Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:1412.3555 (2014).
  19. [NTM] - Graves, Alex, Greg Wayne, and Ivo Danihelka. “Neural turing machines.” arXiv preprint arXiv:1410.5401 (2014).
  20. [Neural GPU] - Łukasz Kaiser, Ilya Sutskever, arXiv:1511.08228 / ICML 2016 (under review)
  21. [QRNN] - Bradbury J, Merity S, Xiong C, et al. Quasi-recurrent neural networks[J]. arXiv preprint arXiv:1611.01576, 2016.
  22. [Memory Network] - Jason Weston, Sumit Chopra, Antoine Bordes, Memory Networks, arXiv:1410.3916
  23. [Pointer Network] - Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly, Pointer Networks, arXiv:1506.03134 / NIPS 2015
  24. [Deep Attention Recurrent Q-Network] - Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, Anastasiia Ignateva, Deep Attention Recurrent Q-Network , arXiv:1512.01693
  25. [Dynamic Memory Networks] - Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor Zhong, Romain Paulus, Richard Socher, "Ask Me Anything: Dynamic Memory Networks for Natural Language Processing", arXiv:1506.07285
  26. [SRU] - Lei T, Zhang Y. Training RNNs as Fast as CNNs[J]. arXiv preprint arXiv:1709.02755, 2017.
  27. [知乎] - 如何评价新提出的RNN变种SRU
  28. [attention] - Xu K, Ba J, Kiros R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//International Conference on Machine Learning. 2015: 2048-2057.
  29. [Persistent RNN] - Diamos G, Sengupta S, Catanzaro B, et al. Persistent rnns: Stashing recurrent weights on-chip[C]//International Conference on Machine Learning. 2016: 2024-2033.
    .. [Persistent RNN] - Diamos G, Sengupta S, Catanzaro B, et al. Persistent RNNs: Stashing Weights on Chip[J]. 2016.
  30. [github] - Awesome Recurrent Neural Networks.

Recurrent Neural Network[Content]的更多相关文章

  1. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  2. Recurrent Neural Network(循环神经网络)

    Reference:   Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...

  3. Recurrent Neural Network系列2--利用Python,Theano实现RNN

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  4. Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...

  5. Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM

    yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...

  6. 循环神经网络(Recurrent Neural Network,RNN)

    为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定, ...

  7. Recurrent Neural Network[survey]

    0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...

  8. 【NLP】Recurrent Neural Network and Language Models

    0. Overview What is language models? A time series prediction problem. It assigns a probility to a s ...

  9. 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 1.Programming assignments:Building a recurrent neural network - step by step

    Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In thi ...

随机推荐

  1. JMeter 关于JMeter 正则表达式提取器的一点研究

    关于JMeter 正则表达式提取器的一点研究   by:授客 QQ:1033553122 1.   实验环境: JMeter 2.13 2.   添加正则表达式提取器 右键线程组->添加-> ...

  2. Android 方法数超过64k、编译OOM、编译过慢解决方案。

    目前将项目中的leancloud的即时通讯改为环信的即时通讯.当引入easeui的时候 出现方法数超过上限的问题. 搜索一下问题,解决方法很简单. 这里简单记录一下,顺序记录一下此解决方案导致的另一个 ...

  3. VMware虚拟机CentOS7网络通信与无线上网

    实现主机和虚拟机网络通信 1.虚拟机设置 VMware界面最上面,选择[虚拟机]->[设置]:将网络连接改为"桥接模式",如下图所示: 2.CentOS7网络设置 自动获取I ...

  4. centos7安装jdk环境

    有时候安装一些软件或者服务都需要jdk环境,今天就在centos上安装最新的jdk环境. 检测历时安装 1.查看Linux自带的JDK是否已安装 # java -version 2.查看JDK信息 # ...

  5. LeetCode题解之Sum Root to Leaf Numbers

    1.题目描述 2.问题分析 记录所有路径上的值,然后转换为int求和. 3.代码 vector<string> s; int sumNumbers(TreeNode* root) { tr ...

  6. backup是个相对论

    工作互备,是很多团队领导者都关注的事情.显然,当一项任务由两个(甚至两个以上的人)来完成,当任务交付使用后出现问题时,不会因为其中某一个成员的缺席而导致问题一时处理不了.如果某个任务只是由一个人来担当 ...

  7. C#-方法(八)

    方法是什么 方法是C#中将一堆代码进行进行重用的机制 他是在类中实现一种特定功能的代码块,将重复性功能提取出来定义一个新的方法 这样可以提高代码的复用性,使编写程序更加快捷迅速 方法格式 访问修饰符 ...

  8. SQL server 2012 数据库日志缓存过大

    由于我公司的每日数据录入量较多,数据库日志与日俱增,前两天就出现了,因为数据库日志太大导致了 服务器磁盘空间不足,于是我上网查了一下,终于找到了一个数据库日志文件压缩的方法 原文出处:http://b ...

  9. sql server 的Maintenance Plans(维护计划)详解

    下面说下我遇到的场景,就是我通过数据库自身的维护计划建立了数据库收缩自动计划,却发现数据库并没有实际性收缩. 前奏自动化配置流程 数据库--管理---维护计划--双击(维护计划向导)--下一步--名称 ...

  10. spring拦截器(interceptor)简介

    1. 拦截器用途 (1)拦截未登录用户直接访问某些链接 (2)拦截日志信息 (3)拦截非法攻击,比如sql注入 2. 涉及jar.类 (1)spring-webmvc.jar (2)HandlerIn ...