import mnist_loader
from network3 import Network
from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
mini_batch_size = 10 #NN算法:sigmoid函数;准确率97%
net = Network([
FullyConnectedLayer(n_in=784, n_out=100),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
net.SGD(training_data, 60, mini_batch_size, 0.1, validation_data, test_data) #CNN算法:1层Convolution+sigmoid函数;准确率98.78%
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2)),
FullyConnectedLayer(n_in=20*12*12, n_out=100),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size) #CNN算法:2层Convolution+sigmoid函数;准确率99.06%。层数过多并不会使准确率大幅度提高,有可能overfit,合适的层数需要通过实验验证出来,并不是越多越好
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2)),
ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
filter_shape=(40, 20, 5, 5),
poolsize=(2, 2)),
FullyConnectedLayer(n_in=40*4*4, n_out=100),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size) #CNN算法:用Rectified Linear Units即f(z) = max(0, z),代替sigmoid函数;准确率99.23%
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU), #激活函数采用ReLU函数
ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
filter_shape=(40, 20, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size) #CNN算法:用ReLU函数+增大训练集25万(原先50000*5,只需将每个像素向上下左右移动一个像素);准确率99.37%
$ python expand_mnist.py #将图片像素向上下左右移动
expanded_training_data, _, _ = network3.load_data_shared("../data/mnist_expanded.pkl.gz")
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
filter_shape=(40, 20, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
net.SGD(expanded_training_data, 60, mini_batch_size, 0.03,validation_data, test_data, lmbda=0.1) #CNN算法:用ReLU函数+增大训练集25万+dropout(随机选取一半神经元)用在最后的FullyConnected层;准确率99.60%
expanded_training_data, _, _ = network3.load_data_shared("../data/mnist_expanded.pkl.gz")
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
filter_shape=(40, 20, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
FullyConnectedLayer(
n_in=40*4*4, n_out=1000, activation_fn=ReLU, p_dropout=0.5),
FullyConnectedLayer(
n_in=1000, n_out=1000, activation_fn=ReLU, p_dropout=0.5),
SoftmaxLayer(n_in=1000, n_out=10, p_dropout=0.5)],
mini_batch_size)
net.SGD(expanded_training_data, 40, mini_batch_size, 0.03,validation_data, test_data)

CNN:人工智能之神经网络算法进阶优化,六种不同优化算法实现手写数字识别逐步提高,应用案例自动驾驶之捕捉并识别周围车牌号—Jason niu的更多相关文章

  1. 用Keras搭建神经网络 简单模版(二)——Classifier分类(手写数字识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  2. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  3. 利用神经网络算法的C#手写数字识别

    欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70. ...

  4. 利用神经网络算法的C#手写数字识别(一)

    利用神经网络算法的C#手写数字识别 转发来自云加社区,用于学习机器学习与神经网络 欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwri ...

  5. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  6. C#中调用Matlab人工神经网络算法实现手写数字识别

    手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写 ...

  7. 实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu

    对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片 ...

  8. 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  9. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

随机推荐

  1. 随机生成n位随机数(包含大写字母、小写字母、数字)

    package com.java.weiju; import java.security.SecureRandom; import java.util.Date; import java.util.R ...

  2. Swift 学习- 04 -- 字符串和字符

    // 字符串 和 字符 // 字符串 是有序的 Character (字符) 类型的值的集合,  通过 String 类型的集合 // swift 的 String 和 Character 类型提供了 ...

  3. 数据库技术丛书:SQL Server 2016 从入门到实战(视频教学版) PDF

    1:书籍下载方式: SQL Server2016从入门到实战 PDF 下载  链接:https://pan.baidu.com/s/1sWZjdud4RosPyg8sUBaqsQ 密码:8z7w 学习 ...

  4. Confluence 6 匿名访问远程 API

    Confluence 管理员可能希望为匿名用户禁用远程访问 API.这样能够避免恶意软件随意在网站进行批量修改. 希望禁用远程访问 API: 在屏幕的右上角单击 控制台按钮 ,然后选择 General ...

  5. 剑指offer 二叉树中和为某一个值的路径

    剑指offer 牛客网 二叉树中和为某一个值的路径 # -*- coding: utf-8 -*- """ Created on Tue Apr 9 15:53:58 2 ...

  6. Windows批处理命令用法

    阅读下面文字需要一定的dos基础概念,象:盘符.文件.目录(文件夹).子目录.根目录.当前目录 每个命令的完整说明请加 /? 参数参考微软的帮助文档可以看到,在 /? 帮助里,"命令扩展名& ...

  7. git如何创建 .gitignore文件

    1.右键 点击git bash here 2.输入 touch .gitignore 生成 .gitignore文件 过滤 不上传 node_modules/

  8. CA认证的原理和流程及https原理

    1.什么是CA证书. 看过一些博客,写的比较形象具体. ◇ 普通的介绍信 想必大伙儿都听说过介绍信的例子吧?假设 A 公司的张三先生要到 B 公司去拜访,但是 B 公司的所有人都不认识他,他咋办捏?常 ...

  9. Sqoop使用,mysql,hbase,hive等相互转换

    Sqoop 是一款用来在不同数据存储软件之间进行数据传输的开源软件,它支持多种类型的数据储存软件. 安装 Sqoop 1.下载sqoop并加mysql驱动包 http://mirror.bit.edu ...

  10. C#获取一周的工作日显示(星期几)

    代码如下: gridBandW1.Caption = System.Globalization.CultureInfo.CurrentCulture.DateTimeFormat.GetDayName ...