ANS(adaptive noise suppression) 是webRTC中音频相关的核心模块之一,为众多公司所使用。从2015年开始,我在几个产品中使用了webRTC的3A(AEC/ANS/AGC)模块。以前仅仅是使用,对其中的算法原理只是初步了解。近半年来,我利用业余时间在看着《语音增强:理论与实践》和《实时语音处理实践指南》这两本书,对降噪算法有了更深的理解,同时又对ANS的代码进行了调试,基本掌握了算法实现。我想把我对ANS的理解写出来。由于内容细节较多,就出一个系列吧。webRTC中的ANS是基于维纳滤波来降噪的,本篇就先讲讲维纳滤波的基本原理。

如图1所示,输入信号y(n)经过一个滤波器后产生一个输出信号x(n),希望x(n)尽量逼近期望信号d(n)。这可以通过计算估计误差e(n)并使其最小化来实现,能够最小化这个估计误差的最优滤波器叫做维纳滤波器。

通常维纳滤波器为线性的,且是FIR滤波器,因为FIR滤波器是稳定的,以及它是线性的方便计算。因而滤波器输出x(n)可以写成式1:

                                                       (1)

其中h(k)为滤波器系数,M为滤波器个数,即是M阶的滤波器。x(n)可以改写成式2:

                                                                                               (2)

其中h为M行1列的滤波器系数向量,y为M行1列的包括过去M个样本的输入向量。h和y表示如下:

所以是一个实数值。

估计误差e(n)可以表示如式3:

                                                                     (3)

为了找到最优的滤波器系数,得求估计误差的统计均方值,即式4:

                                                                                                   (4)

其中E[•]表示期望。因为

所以

从而得到式5:

                                                             (5)

展开后得到如下系列式子:

因为

所以

定义表示两个输入值之间的自相关,n表示序列差。所以:

再定义表示输入值和期望输出值之间的互相关,n表示序列差。所以:

所以上面式子5可以改写成式子6

      (6)

展开后得式7:

                                 (7)

再改写成如下形式,得到式8:

                                                 (8)

上面的式8是有限脉冲响应滤波器。再来考虑一种双边的无限脉冲滤波器,形式如式9:

                                                        (9)

则式8可写成式10:

                                              (10)

写成卷积形式,得到式11:

                                                                                         (11)

对两边做傅里叶变换,时域卷积变成频域就是乘积,所以得到式12:

                                                                                      (12)

其中是输入的自功率谱,自功率谱等于自相关的傅里叶变换。 是输入与输出的互功率谱,互功率谱等于互相关的傅里叶变换。所以得到式13:

                                                                                                  (13)

上式就是频域维纳滤波器的一般形式。

如果要把维纳滤波用到语音降噪上,图1中的y(n)就是带噪语音信号,x(n)就是纯净语音信号。假设n(n)表示噪声信号,如果只考虑加性噪声,则带噪语音信号、纯净语音信号和噪声信号的关系如下:y(n) = x(n) + n(n),做傅里叶变换后的表达式如下:

假设噪声与语音不相关且具有零均值,则

其中表示纯净语音的自功率谱,表示噪声的自功率谱。

带入式13可得式14:

                                                                               (14)

如果定义为频点为时的先验信噪比(prior SNR,表示纯净语音和噪声的功率比值,后验信噪比(post SNR)表示带噪语音和噪声的功率比值) ,则式14可以表示为式15:

                                                                                          (15)

式15就是维纳滤波器的通用的表示形式,是用先验信噪比来表示的。webRTC里的ANS就是基于这个表达式做语音降噪的。下篇将讲ANS的处理流程以及语音信号在时域和频域相互转换时的一些细节。

webRTC中语音降噪模块ANS细节详解(一)的更多相关文章

  1. webRTC中语音降噪模块ANS细节详解(二)

    上篇(webRTC中语音降噪模块ANS细节详解(一))讲了维纳滤波的基本原理.本篇先给出webRTC中ANS的基本处理过程,然后讲其中两步(即时域转频域和频域转时域)中的一些处理细节. ANS的基本处 ...

  2. webRTC中语音降噪模块ANS细节详解(三)

    上篇(webRTC中语音降噪模块ANS细节详解(二))讲了ANS的处理流程和语音在时域和频域的相互转换.本篇开始讲语音降噪的核心部分,首先讲噪声的初始估计以及基于估计出来的噪声算先验信噪比和后验信噪比 ...

  3. webRTC中语音降噪模块ANS细节详解(四)

    上篇(webRTC中语音降噪模块ANS细节详解(三))讲了噪声的初始估计方法以及怎么算先验SNR和后验SNR. 本篇开始讲基于带噪语音和特征的语音和噪声的概率计算方法和噪声估计更新以及基于维纳滤波的降 ...

  4. python中argparse模块用法实例详解

    python中argparse模块用法实例详解 这篇文章主要介绍了python中argparse模块用法,以实例形式较为详细的分析了argparse模块解析命令行参数的使用技巧,需要的朋友可以参考下 ...

  5. Python中random模块生成随机数详解

    Python中random模块生成随机数详解 本文给大家汇总了一下在Python中random模块中最常用的生成随机数的方法,有需要的小伙伴可以参考下 Python中的random模块用于生成随机数. ...

  6. Java中堆内存和栈内存详解2

    Java中堆内存和栈内存详解   Java把内存分成两种,一种叫做栈内存,一种叫做堆内存 在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配.当在一段代码块中定义一个变量时,ja ...

  7. angular-ngSanitize模块-$sanitize服务详解

    本篇主要讲解angular中的$sanitize这个服务.此服务依赖于ngSanitize模块. 要学习这个服务,先要了解另一个指令: ng-bing-html. 顾名思义,ng-bind-html和 ...

  8. angular-ngSanitize模块-linky过滤器详解

    本篇主要讲解angular中的linky这个过滤器.此过滤器依赖于ngSanitize模块. linky能找出文本中的链接,然后把它转换成html链接.什么意思,就是说,一段文本里有一个链接,但是这个 ...

  9. 在ASP.NET 5应用程序中的跨域请求功能详解

    在ASP.NET 5应用程序中的跨域请求功能详解 浏览器安全阻止了一个网页中向另外一个域提交请求,这个限制叫做同域策咯(same-origin policy),这组织了一个恶意网站从另外一个网站读取敏 ...

随机推荐

  1. MongoDB查询或修改内嵌文档

    作为非关系型数据库中的佼佼者,MongoDB一大优势在于能够在一条文档中存储对象类型的数据,适当增加冗余来让数据库更好用.文档中一个对象类型的字段在MongoDB中被称为内嵌文档(Embedded) ...

  2. OVN入门

    参考链接 如何借助 OVN 来提高 OVS 在云计算环境中的性能 OVN简介 Open vSwitch Documentation OVSDB介绍及在OpenDaylight中的调用 OpenDayl ...

  3. 使用 antd 的 form 组件来自定义提交的数据格式

    最近使用antd UI 的表单提交数据,数据里面有的是数组,有的是对象.提交的时候还要去校验参数,让人非常头疼.在我仔细看完文档之后,发现 antd 的 form 组件做的非常不错,这些需求通通不是问 ...

  4. Django的form组件基本使用——简单校验

    from django.contrib import admin from django.urls import path from app01 import views urlpatterns = ...

  5. python 加速运算

    原文链接:https://blog.csdn.net/qq_27009517/article/details/103805099 一.加速查找 1.用set而非list import time dat ...

  6. Linux常用命令 - head命令详解

    21篇测试必备的Linux常用命令,每天敲一篇,每次敲三遍,每月一循环,全都可记住!! https://www.cnblogs.com/poloyy/category/1672457.html 显示文 ...

  7. TreeView和ListView数据库查询数据联动操作

    好久不用了,重新整理下放这里以备需要使用,功能见图 数据库表结构 定义TreeView addObject中data存储的记录集 type PNode = ^TNode; TNode = record ...

  8. JS边角料: NodeJS+AutoJS+WebSocket+TamperMonkey实现局域网多端文字互传

    ---阅读时间约 7 分钟,复现时间约 15 分钟--- 由于之前一直在用的扩展 QPush 停止服务了,苦于一人凑齐了 Window, Android, Mac, ios 四种系统的设备,Apple ...

  9. shell 脚本 根据PID过滤查看进程所有信息

    #!/bin/bash read -p "输入要查询的PID: " P #筛选第二列等于输入的PID号 n=`ps aux | awk '$2~/^'$P'$/ {print $1 ...

  10. centos7关于防火墙的一些操作

    防火墙相关 # 检查防火墙状态 systemctl status firewalld # 开启防火墙 systemctl start firewalld # 关闭防火墙 systemctl stop ...