A.In-game Chat

题目:就是从后面数连着的‘('的个数是不是严格比剩下的字符多

思路:水题,直接从后往前遍历即可

代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int main(){
char s[1500];
int t;
scanf("%d",&t);
while(t--){
// scanf("%s",&s);
int n;
int sum=0,flag=0;
scanf("%d",&n);
scanf("%s",&s);
for(int i=n-1;i>=0;i--){
if(s[i]==')'&&flag==0){
sum++;
}else{
flag=1;
}
}
if(sum>n-sum){
printf("Yes\n");
}else{
printf("No\n");
}
}
}

B.Fair Numbers

题目:一个数是公平的,当这个数可以整除它的每一位非零数。问给定一个数n,找到最小的数x(n<=x)是公平的

思路:暴力模拟就行,直接判断每个数是不是公平的即可(因为1-9的最小公倍数是2520,很小)

这个题当时看到这么多交的可能是暴力,写完以后发现最坑的地方是%0,当0是除数的情况

代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int main(){
int t;
scanf("%d",&t);
while(t--){
long long int num;
int a[150];
scanf("%lld",&num);
for(long long int i=num;;i++){
long long int n=i;
int flag=0; while(n!=0){
int t=(n%10);
if(t==0){
n/=10;
continue;
}
if(i%t!=0){
flag=1;
break;
} //printf("%lld\n",i);
n/=10; }
if(flag==0){
printf("%lld\n",i);
break;
}
}
}
}

C.Peaceful Rooks

题目:一个二维平面(n×n),在平面上有m个点。在进行一次操作时,可以选择其中的一个点进行平行或者垂直移动,并且移动后这m个点的横纵坐标两两不相等,问为使这m个点都在主对角线上(坐标的横纵坐标相等)所需要的最小的移动次数是多少

思路:最原始的平移方法就是通过移动直接平移或者垂直移动到所在位置的主对角线上,通过把二维平面转换为图,然后如果存在环的话,就是这些点不能够通过上述最简单的移动方式达到,因为他们相互限制,这样的话就需要多加一步,随便一个点移除这个状态。

这个题就要记住一个是找根和并查集,再就是二维平面转换为图的问题。类似的问题还有小孩子们分巧克力的问题,x和y是某个小孩子最喜欢的巧克力,然后每个小孩子分配到自己喜欢的巧克力最少需要多少步

代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int maxx=1e5+10;
int parent[maxx];
int findd(int x){
if(parent[x]==x){
return x;
}
return parent[x]=findd(parent[x]);
}
int main(){
int t;
scanf("%d",&t);
while(t--){
int n,m;
scanf("%d %d",&n,&m);
//int parent[maxx];
for(int i=1;i<=n;i++){
parent[i]=i;
}
int sum=0;
for(int i=0;i<m;i++){
int x,y;
scanf("%d %d",&x,&y);
if(x==y){
continue;
}
sum++;
int fx=findd(x),fy=findd(y);
if(fx==fy){//有环,并且自己死锁的那种情况已经排除
sum++;
}else{
parent[x]=fy;
}
}
printf("%d\n",sum);
}
}

Codeforces Round #692 (Div. 2, based on Technocup 2021 Elimination Round 3)的更多相关文章

  1. Codeforces Round #692 (Div. 2, based on Technocup 2021 Elimination Round 3) C. Peaceful Rooks (思维,dsu找环)

    题意:一个棋盘上有一些"车",现在要让这些"车"跑到左倾斜的对角线上,每次可以移动一个棋子,但是棋盘的任意时刻都不能出现一个"车"能吃另一个 ...

  2. Codeforces Round #679 (Div. 2, based on Technocup 2021 Elimination Round 1)

    考场上只做出来四道,第二天一早就写出来了E,蛮绝望的. A Finding Sasuke 水构造 #include <cstdio> #include <algorithm> ...

  3. Codeforces Round #687 (Div. 2, based on Technocup 2021 Elimination Round 2) D. XOR-gun (二进制,异或,前缀和)

    题意:给你一组非递减的数,你可以对两个连续的数进行异或,使其合并为一个数,问最少操作多少次使得这组数不满足非递减. 题解:首先,给出的这组数是非递减的,我们考虑二进制,对于三个连续的非递减的最高位相同 ...

  4. Codeforces Round #687 (Div. 2, based on Technocup 2021 Elimination Round 2) C. Bouncing Ball (后缀和,枚举)

    题意:有一长度为\(n\)的平台,平台有的位置有木桩,可以使小球弹起来,小球必须从第\(p\)个位置开始,而且每次都会向右弹\(k\)个单位,然后有的位置是没有木桩的,你可以在这些的空的位置放一个木桩 ...

  5. Codeforces Round #687 (Div. 2, based on Technocup 2021 Elimination Round 2) B. Repainting Street (枚举)

    题意:有\(n\)栋房子,每栋房子都有自己的颜色\(c_i\),你每次可以对连续的长度为\(k\)的区间改变任何房子的颜色,问最少多少次可以使得所有房子颜色相同. 题解:因为只有\(100\)中颜色, ...

  6. Codeforces Round #687 (Div. 2, based on Technocup 2021 Elimination Round 2) A. Prison Break

    题意:有一张\(n\)x\(m\)的图,图中每个点都关押着罪犯,在坐标\((r,c)\)处有一个出口,每名罪犯每秒可以可以像上下最有移动一个单位或者不动,问所有罪犯能够逃离监狱的最少时间. 题解:直接 ...

  7. Codeforces Round #687 (Div. 2, based on Technocup 2021 Elimination Round 2)

    A. Prison Break 题意:就是在一个n*m的矩阵中,以(1,1)为起点(n,m)为终点,每个点以每个单位1s的速度移动,问总共至少需要多少秒,所有的矩阵点就能够全部移动到(r,c)中 思路 ...

  8. Codeforces Round #517 (Div. 2, based on Technocup 2019 Elimination Round 2)

    Codeforces Round #517 (Div. 2, based on Technocup 2019 Elimination Round 2) #include <bits/stdc++ ...

  9. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)

    A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...

随机推荐

  1. 2019_西湖论剑_预选赛 testre

    2019_西湖论剑_预选赛 testre 程序中关键操作是比较ptr,其中夹杂的一部分v26计算是为了混淆我们的分析.那么我们只要跟踪ptr数组的生成便可,向上发现v11,加密操作数组. 接下来跟踪v ...

  2. Java学习之String与int的相互转换

    •String 转 int 两种方式 int a = Integer.parseInt(s);int b = Integer.valueOf(s).intValue(); 代码 public clas ...

  3. Spring Cloud 升级之路 - 2020.0.x - 1. 背景知识、需求描述与公共依赖

    1. 背景知识.需求描述与公共依赖 1.1. 背景知识 & 需求描述 Spring Cloud 官方文档说了,它是一个完整的微服务体系,用户可以通过使用 Spring Cloud 快速搭建一个 ...

  4. java面试-强引用、软引用、弱引用和幻象引用有什么区别

    在Java语言中,除了基本数据类型外,其他的都是指向各类对象的对象引用:Java中根据其生命周期的长短,将引用分为4类. 不同的引用类型,主要体现的是对象不同的可达性状态和对垃圾收集的影响. 1 .强 ...

  5. python基础(二):数据类型

    数据类型 学习Python时,一定要注意Python中数据类型和数据结构的学习,这对于你是否能够学好Python其中很重要的作用. 什么是数据类型? 人类有思想,很容易区分汉字和数字的区别,例如,你知 ...

  6. [面试仓库]CSS面试题汇总-定位篇

    一,relative.absolute 的区别   我们还是来说常见的地方.首先就是relative,absolute的区别: relative是依据自身来定位的 absolute则是依据离其最近一层 ...

  7. Java代码度量分析工具:DesigniteJava简介

    前言 在Java面向对象课程的学习过程中,我们需要使用度量工具来分析自己程序的代码结构.受OO课程组以及前辈们博客提醒,笔者找到了DesigniteJava这款软件,现对此软件进行简单的说明. 一.D ...

  8. 记docker安装和ida远程调试问题

    docker安装 1.卸载可能存在的旧版本: sudo apt-get remove docker docker-engine docker-ce docker.io   如果想要彻底卸载docker ...

  9. JavaScript中的new,bind,call,apply的简易实现

    Function原型链中的 apply,call 和 bind 方法是 JavaScript 中相当重要的概念,与 this 关键字密切相关,相当一部分人对它们的理解还是比较浅显,所谓js基础扎实,绕 ...

  10. Seata搭建与分布式事务入门

    在单体架构下,我们大多使用的是单体数据库,通过数据库的ACID特性支持,实现了本地事务.但是在微服务架构下复杂的业务关系中,分布式事务是不可避免的问题之一.Seata是Spring Cloud Ali ...