1.【扯谈概念】

\(dp\) 套 \(dp\) 其实也就是 \(dp\) 。

这里就定义下面两个概念:

内层 \(dp\) 表示的是被套在里面的那个 \(dp\)

外层 \(dp\) 表示的是最外面的那个 \(dp\)

这样可能比较抽象。

举个例子,像这种形式的 \(dp\) 转移:

\[f[i][j]=\max(f[i][j],f[i][j-k]+g[i][k])
\]

在这里面 \(g[i][k]\) 是不定的,就是我们开始不知道,是我们求出来的,然后我们利用它去进行后面的转移,把它在后面当成一个恒定的 \(val\) 。我们把求解这个 \(g\) 的过程就叫做内层 \(dp\)。

而我们发现 \(f\) 就是我们要求的真正的一个答案状态,然后是把求解这个 \(g\) 的过程包含着的,我们就把求解 \(f\) 的过程叫做外层 \(dp\) 。

而求解这个问题的过程就叫做 \(dp\) 套 \(dp\) 。

本质上说其实 \(dp\) 套 \(dp\) 在我的理解来看就是首先就是将内层的 \(dp\) 结果,作为外层 \(dp\) 进行转移的方法。

如果通俗说就是先算出每一步可能产生的贡献。

然后依托贡献在来进行一次 \(dp\) 。

2.【例题讲解】

你单独看着这个概念,你可能似懂非懂的。

因为这个东西确实有点抽象,下面配合例题来进行讲解。

The First Problem

题意:

有 \(n\) 块木板,每一块木板长度为 \(m\) ,你可以粉刷 \(t\) 次,每次只能粉刷一块木板上连续的一部分为同一颜色(红色或蓝色),给你一个期望粉刷出的木板的颜色,问你最多能粉刷出多少个与期待相同颜色的格子。

题解:

当拿到这个题目的时候,根据传统,它求什么我们就设什么。

我们可以设状态为 \(f[i][j][k]\) 表示刷 \(i\) 次,刷到第 \(j\) 行,第 \(k\) 列的最多正确粉刷数量。

考虑去转移这个方程,发现可以写出这样的状态转移:

\[f[i][j][k]=\sum_{l=0}^{k-1} max(f[i][j][k],f[i-1][j][l]+g[j][l][k])
\]

其中的 \(g[j][l][k]\) 表示的是第 \(j\) 行第 \(l\) 列到第 \(k\) 列的最多粉刷正确数。

注意转移的时候从上一行到下一行的处理。

然后这个方程就没问题了。

分析这么的时间复杂度为 \(O(tnm^3)\)

如果将 \(n\) 与 \(m\) 认为同阶,那么复杂度为 \(O(tn^4)\)

显然不可过的样子,得优化一下。

我们考虑 \(dp\) 的复杂度都来源于哪里?

可能是枚举状态也可能是转移的复杂度。

这个转移的复杂度我们发现是无法有效的优化的(至少我不会)。

然后我们考虑缩小它的状态,我们能发现我们等价于是枚举了每个点的 \(dp\) 情况。

我们试着把它弄为每行的 \(dp\) 情况。

那么状态就变为: \(f[i][j]\) 表示的是第 \(i\) 行刷 \(j\) 次的最大正确粉刷数量。

dp 套 dp扯谈的更多相关文章

  1. bzoj 3864: Hero meet devil [dp套dp]

    3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...

  2. [模板] dp套dp && bzoj5336: [TJOI2018]party

    Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...

  3. luogu 4158 粉刷匠 dp套dp

    dp套dp 每个木板是个递推的dp,外部是个分组背包 #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i&l ...

  4. DP套DP

    DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...

  5. Codeforces 372B Counting Rectangles is Fun:dp套dp

    题目链接:http://codeforces.com/problemset/problem/372/B 题意: 给你一个n*m的01矩阵(1 <= n,m <= 40). 然后有t组询问( ...

  6. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...

  7. codeforces 979E(dp套dp)

    题意: 有n个点,编号为1~n.有的点颜色是黑色,有的点颜色是白色,有的点的颜色待涂.你还可以连一些边,但这些边一定是从小编号连到大编号的点. 对于一个确定的图,我们去统计有多少条路径满足“该路径经过 ...

  8. P4590-[TJOI2018]游园会【dp套dp】

    正题 题目链接:https://www.luogu.com.cn/problem/P4590 题目大意 给出一个长度为\(m\)的字符串\(s\). 对于每个\(k\in[0,m]\)求有多少个长度为 ...

  9. 洛谷 P5279 - [ZJOI2019]麻将(dp 套 dp)

    洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\)​​​​​.我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_ ...

随机推荐

  1. 浅析IOC 和 DI

    学习过spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...

  2. Step By Step(Lua输入输出库)

    Step By Step(Lua输入输出库) I/O库为文件操作提供了两种不同的模型,简单模型和完整模型.简单模型假设一个当前输入文件和一个当前输出文件,他的I/O操作均作用于这些文件.完整模型则使用 ...

  3. Selenium 库的基本用法

    Selenium库的基本使用   1.基本使用 from selenium import webdriver from selenium.webdriver.common.by import By f ...

  4. Go语言流程控制06--猜数字游戏

    package main import ( "fmt" "math/rand" "time" ) /* ·随机生成一个三位数 ·让用户输入其 ...

  5. TensorFlow+TVM优化NMT神经机器翻译

    TensorFlow+TVM优化NMT神经机器翻译 背景 神经机器翻译(NMT)是一种自动化的端到端方法,具有克服传统基于短语的翻译系统中的弱点的潜力.本文为全球电子商务部署NMT服务. 目前,将Tr ...

  6. 硬件delay评估表

    硬件delay评估表 硬件延时评估表用于快速评估一个模型在特定硬件环境和推理引擎上的推理速度. Bw 主要用于定义PaddleSlim支持的硬件延时评估表的格式. 概述 硬件延时评估表中存放着所有可能 ...

  7. OFRecord 数据格式

    OFRecord 数据格式 深度学习应用需要复杂的多阶段数据预处理流水线,数据加载是流水线的第一步,OneFlow 支持多种格式数据的加载,其中 OFRecord 格式是 OneFlow 原生的数据格 ...

  8. 理解 this

    this this 取什么值是在函数执行的时候确认的,不是在函数定义的时候确认的 this 的不同应用场景,this 的指向 函数在调用时,js 会默认给 this 绑定一个值,this 的值与绑定方 ...

  9. 狂神说linux笔记:基本操作

    Linux介绍 Linux的概述本文就不赘述了,如果想仔细了解的小伙伴可以百度Linux的历史或者看看狂神的原文.本文主要写linux的操作过程知识点. 狂神的原文如下: https://mp.wei ...

  10. Java如何使用while和for嵌套循环控制输出数据,使数据奇偶行不同

    /* 题目1 使用Eclipse编写控制台应用程, 使用while循环在控制台打印10行10列的如下图形 □ □ □ □ □ □ □ □ □ □ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ □ □ □ □ ...