TensorFlow实现多层感知机MINIST分类
TensorFlow实现多层感知机MINIST分类
TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度。使用梯度自动更新用变量定义的张量。本文将使用 TensorFlow 优化器来训练网络。
前面定义了层、权重、损失、梯度以及通过梯度更新权重。用公式实现可以帮助我们更好地理解,但随着网络层数的增加,这可能非常麻烦。
使用 TensorFlow 的一些强大功能,如 Contrib(层)来定义神经网络层及使用 TensorFlow 自带的优化器来计算和使用梯度。
通过前面的学习,已经知道如何使用 TensorFlow 的优化器。Contrib 可以用来添加各种层到神经网络模型,如添加构建块。这里使用的一个方法是
tf.contrib.layers.fully_connected,在 TensorFlow 文档中定义如下:
这样就添加了一个全连接层。
提示:上面那段代码创建了一个称为权重的变量,表示全连接的权重矩阵,该矩阵与输入相乘产生隐藏层单元的张量。如果提供了 normalizer_fn(比如batch_norm),那么就会归一化。否则,如果 normalizer_fn 是 None,并且设置了 biases_initializer,则会创建一个偏置变量并将其添加到隐藏层单元中。最后,如果 activation_fn 不是 None,它也会被应用到隐藏层单元。
具体做法
第一步是改变损失函数,尽管对于分类任务,最好使用交叉熵损失函数。这里继续使用均方误差(MSE):
接下来,使用 GradientDescentOptimizer:
对于同一组超参数,只有这两处改变,在测试数据集上的准确率只有
61.3%。增加 max_epoch,可以提高准确性,但不能有效地发挥 TensorFlow 的能力。
这是一个分类问题,所以最好使用交叉熵损失,隐藏层使用 ReLU 激活函数,输出层使用 softmax 函数。做些必要的修改,完整代码如下所示:
解读分析
修改后的 MNIST MLP 分类器在测试数据集上只用了一个隐藏层,并且在 10 个 epoch 内,只需要几行代码,就可以得到 96% 的精度:
由此可见 TensorFlow 的强大之处。
TensorFlow实现多层感知机MINIST分类的更多相关文章
- TensorFlow实现多层感知机函数逼近
TensorFlow实现多层感知机函数逼近 准备工作 对于函数逼近,这里的损失函数是 MSE.输入应该归一化,隐藏层是 ReLU,输出层最好是 Sigmoid. 下面是如何使用 MLP 进行函数逼近的 ...
- TensorFlow基础笔记(2) minist分类学习
(1) 最简单的神经网络分类器 # encoding: UTF-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist i ...
- gluon 实现多层感知机MLP分类FashionMNIST
from mxnet import gluon,init from mxnet.gluon import loss as gloss, nn from mxnet.gluon import data ...
- TensorFlow学习笔记7-深度前馈网络(多层感知机)
深度前馈网络(前馈神经网络,多层感知机) 神经网络基本概念 前馈神经网络在模型输出和模型本身之间没有反馈连接;前馈神经网络包含反馈连接时,称为循环神经网络. 前馈神经网络用有向无环图表示. 设三个函数 ...
- 『TensorFlow』读书笔记_多层感知机
多层感知机 输入->线性变换->Relu激活->线性变换->Softmax分类 多层感知机将mnist的结果提升到了98%左右的水平 知识点 过拟合:采用dropout解决,本 ...
- TensorFlow实现自编码器及多层感知机
1 自动编码机简介 传统机器学习任务在很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难 ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
- TensorFlow多层感知机函数逼近过程详解
http://c.biancheng.net/view/1924.html Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearni ...
- [ DLPytorch ] 线性回归&Softmax与分类模型&多层感知机
线性回归 基础知识 实现过程 学习笔记 批量读取 torch_data = Data.TensorDataset(features, labels) dataset = Data.DataLoader ...
随机推荐
- 10- JMeter5.1.1 工具快速入门
什么是JMeter JMeter是Apache组织开发的开源软件,由Java语言实现. 主要用于软件系统性能测试,他最初被设计用于web测试,后来被扩展到其他领域. Jmeter特点 http://w ...
- 基于Frida框架打造Art模式下的脱壳工具(OpenMemory)的原理分析
本文博客地址:https://blog.csdn.net/QQ1084283172/article/details/80956614 作者dstmath在看雪论坛公布一个Android的art模式下基 ...
- 16.PHP_Ajax模拟服务器登录验证
Ajax模拟登陆验证 index.php <script language="javascript"> var http_request = false; ...
- layui的loading加载中
var load = layer.load(1, { content: '数据加载中', shade: [0.4, '#393D49'], // time: 10 * 1000, success: f ...
- 简述MySQL优化
数据库的优化可以从四个方面来优化: 1.结构层: web服务器采用负载均衡服务器,mysql服务器采用主从复制,读写分离 2.储存层: 采用合适的存储引擎,采用三范式 3.设计层: 采用分区分表,索引 ...
- PHP 下载apk文件
方式一.public function downApkFile(){ $path = Env::get('root_path')."apk/"; //路径 $file_name = ...
- js 实现 bind 的这五层,你在第几层?
最近在帮朋友复习 JS 相关的基础知识,遇到不会的问题,她就会来问我. 这不是很简单?三下五除二,分分钟解决. function bind(fn, obj, ...arr) { return fn.a ...
- 【BUAA软工】Beta阶段设计与计划
一.需求再分析 根据用户反馈,是否发现之前的需求分析有偏差?为什么会出现这种偏差?beta阶段你们是否能真的分析清楚用户需求?如何做到? 根据alpha阶段同学们以及课程组老师和助教的使用反馈,总结起 ...
- Java中对象池的本质是什么?(实战分析版)
简介 对象池顾名思义就是存放对象的池,与我们常听到的线程池.数据库连接池.http连接池等一样,都是典型的池化设计思想. 对象池的优点就是可以集中管理池中对象,减少频繁创建和销毁长期使用的对象,从而提 ...
- [DB] MySQL 索引分类
按数据结构 B树索引 数据位于叶子节点,到任何一个叶子节点的距离相同,一般不超过3-4层 B+树索引:每个叶子节点除了数据还存放前后叶子节点的指针,方便快速检索,是InnoDB采用的索引结构 Hash ...