卷积神经网络有三个结构上的特性:局部连接,权重共享以及空间或时间上的次采样。这些特性使得卷积神经网络具有一定程度上的平移、缩放和扭曲不变性.

CNN由可学习权重和偏置的神经元组成。每个神经元接收多个输入,对它们进行加权求和,将其传递给一个激活函数并用一个输出作为响应。

循环神经网络可以记住先前时间步骤的输入状态,这有助于它决定未来的时间步长。

卷积层:使用过滤器执行卷积操作,扫描输入大小。

池化层(POOL)是一种下采样操作,通常在卷积层之下使用,该卷积层执行一些空间不变性。其中最大池化和平均池化属于特殊操作,分别采用最大值和平均值。

全连接层(FC)在平坦输入上运行,每个输入都连接到所有神经元。如果全连接层存在,通常位于网络体系结构的末尾,可用于优化诸如分类评分等目标。

CNN、RNN的更多相关文章

  1. CNN、RNN、DNN

    一:神经网络 技术起源于上世纪五.六十年代,当时叫感知机(perceptron),包含有输入层.输出层和一个隐藏层.输入的特征向量通过隐藏层变换到达输出层,由输出层得到分类结果.但早期的单层感知机存在 ...

  2. [转帖]CNN、RNN、DNN的一般解释

    CNN.RNN.DNN的一般解释 https://www.jianshu.com/p/bab3bbddb06b?utm_campaign=maleskine&utm_content=note& ...

  3. keras和tensorflow搭建DNN、CNN、RNN手写数字识别

    MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...

  4. [转]什么是CNN、RNN、LSTM

    . 全连层 每个神经元输入: 每个神经元输出: (通过一个激活函数) 2. RNN(Recurrent Neural Network) 与传统的神经网络不通,RNN与时间有关. 3. LSTM(Lon ...

  5. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  6. CNN(卷积神经网络)、RNN(循环神经网络)和DNN(深度神经网络)

    本文转载修改自:知乎-科言君 感知机(perceptron) 神经网络技术起源于上世纪五.六十年代,当时叫感知机(perceptron),拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换达 ...

  7. PaddlePaddle︱开发文档中学习情感分类(CNN、LSTM、双向LSTM)、语义角色标注

    PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产 ...

  8. [转] 图解Seq2Seq模型、RNN结构、Encoder-Decoder模型 到 Attention

    from : https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/ 一.Seq2Seq 模型 1. 简介 Sequence-to ...

  9. 神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId ...

随机推荐

  1. 禁止点击、禁止button触发【c#】

    bts.Attributes["onclick"] = "return false; ";

  2. C#筛选项联动,联动筛选

    protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { FillDep(); } // FillDG(); ...

  3. springcloud - alibaba - 2 - 集成Feign - 更新完成

    1.依赖 依赖管理 <parent> <artifactId>spring-boot-parent</artifactId> <groupId>org. ...

  4. CRLF漏洞浅析

    部分情况下,由于与客户端存在交互,会形成下面的情况 也就是重定向且Location字段可控 如果这个时候,可以向Location字段传点qqgg的东西 形成固定会话 但服务端应该不会存储,因为后端貌似 ...

  5. JavaIO——File类

    1.File文件类 File类(描述具体文件或文件夹的类):是唯一一个与文件本身操作有关的程序类,可完成文件的创建.删除.取得文件信息等操作.但不能对文件的内容进行修改. (1)File类的基本使用 ...

  6. 【Go】【Basic】MacOS上搭建GO开发环境

    1. GO下载 1.1. 下载地址:https://www.golangtc.com/download (需要科学上网) 1.1.1. PKG安装: 下载这个包:go1.9.2.darwin-amd6 ...

  7. shell脚本采集系统cpu、内存、磁盘、网络信息

    有不少朋友不知道如何用shell脚本采集linux系统相关信息,包括cpu.内存.磁盘.网络等信息,这里脚本小编做下讲解,大家一起来看看吧. 一.cpu信息采集 1),采集cpu使用率采集算法:通过/ ...

  8. lucene中创建索引库

    package com.hope.lucene;import org.apache.commons.io.FileUtils;import org.apache.lucene.document.Doc ...

  9. Vue局部组件和全局组件

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  10. numpy基础教程--where函数的使用

    在numpy中,where函数是一个三元运算符,函数原型为where(condition, x, y),意思是当条件成立的时候,将矩阵的值设置为x,否则设置为y 一个很简单的应用就是,在一个矩阵当中, ...