题目翻译:学习 local feature descriptors 使用 triplets 还有的卷积神经网络。读罢此文,只觉收获满满,同时另外印象最深的也是一个(文章中会提及)字。

1 Contribution

这篇论文主要做的贡献有:

  • 提出了一种复杂度更小的triplets,更浅,计算度复杂小,表现也很好。
  • 并且借助一种 in-triplet mining的训练方法,降低了挖掘hard negatives的复杂度提高了表现。
  • 论文还介绍了两种不同的loss function在不同的任务下的表现。

下面将围绕这些贡献展开说明:

2 Learning with pairs

这一小节作者介绍了一下孪生神经网络的训练方法。

\[l\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} ; \ell\right)= \begin{cases}\left\|f\left(\boldsymbol{x}_{1}\right)-f\left(\boldsymbol{x}_{2}\right)\right\|_{2} & \text { if } \ell=1 \\ \max \left(0, \mu-\left\|f\left(\boldsymbol{x}_{1}\right)-f\left(\boldsymbol{x}_{2}\right)\right\|_{2}\right) & \text { if } \ell=-1\end{cases}
\]

\(\ell=1\)代表\(x_1,x_2\)是positive pairs,反之则是negative pairs。同时当模型训练到一定程度,negative pairs所产生的loss就是0了,对模型的训练不起作用,因此之前[4]提出了mining hard negatives的方法来应对,具体可见我的上一篇博文,同时这种方法代价很高。

3 Learning with triplets

我们假设取样有\(\{a,p,n\}\),\(a\)和\(p\)来自同一个关键点的不同视角,\(a\)和\(n\)则来自不同的关键点,那么训练的目的是尽量使得\(a\)和\(p\)得到的特征描述更近,\(a\)和\(n\)得到的特征描述更远。因此我们可以定义\(\delta_{+}=\|f(\boldsymbol{a})-f(\boldsymbol{p})\|_{2}\) and \(\delta_{-}=\|f(\boldsymbol{a})-f(\boldsymbol{n})\|_{2}\)。

3.1 Two loss functions

  • Margin ranking loss

    \[\lambda\left(\delta_{+}, \delta_{-}\right)=\max \left(0, \mu+\delta_{+}-\delta_{-}\right)
    \]

    我们可以观察到,当\(\delta_{-}>\delta_{+}+\mu\)时,\(loss>0\),模型得到训练。

  • Ratio loss

\[\hat{\lambda}\left(\delta_{+}, \delta_{-}\right)=\left(\frac{e^{\delta_{+}}}{e^{\delta_{+}}+e^{\delta_{-}}}\right)^{2}+\left(1-\frac{e^{\delta_{-}}}{e^{\delta_{+}}+e^{\delta_{-}}}\right)^{2}
\]

​ 模型得到训练当 \(\frac{\delta_{-}}{\delta_{+}} \rightarrow \infty\).训练目标是尽可能让 \(\left(\frac{e^{\delta_{+}}}{e^{\delta_{+}+} e^{\delta_{-}}}\right)^{2}\) to 0 , and \(\left(\frac{e^{\delta_{-}}}{e^{\delta++e^{\delta}}}\right)^{2}\) to 1。

3.2 In-triplet hard negative mining with anchor swap

这篇论文的第一个令人拍手称快的点在这里!

类似的思想对Ratio loss同样适用。

3.3 Implementation details

这一小节主要介绍了,训练上的一些细节,模型结构很简单。

同时引用原文里的一句话,阐述了为何把模型设置的尽量简单。

Our motivation for such shallow network is to develop a descriptor for practical applications including those requiring real time processing. This is a challenging goal given that all previously introduced descriptors are computationally very intensive, thus impractical for most applications.

4 Experimental evaluation

这一节作者介绍了从两个方面评估模型的方法,一个是 ROC curves,另一个是mean average precision,刚开始不知道这两个指标是怎么来的,做什么的,查阅了参考小节里的文章,有了一个大致的认识,关于这两种评估方法的一些介绍引用原文:

The evaluation is done with two different evaluation metrics frequently found in the literature, patch pair classification success in terms of ROC curves [22], and mean average precision in terms of correct matching of feature points between pairs of images [16]. Note that these two metrics are of very different nature,the former measures how succesfull a classification of positive and negative patch pairs is, and the latter is evaluating the performance of a descriptor in nearest neighbour matching scenario where the task is to find correspondences in two large sets of descriptors.

4.1 Patch pair classification

可以看到在相关数据集上的FPR95指数,TFeat(论文模型的名字)要表现更好:

4.2 Nearest neighbour patch matching

这一小节作者介绍了结合数据集的一些采样方法来计算precision-recall cruves关于Map指标的一些相关介绍,可查阅附录,这里就不过多展开了

  • Ratio loss vs. margin loss

	-  大致可以发现map值的变化随epoch的变化是比较缓慢的。

	- radio loss 随着训练在Nearest neighbour patch matching上表现会**越来越差**

	- 问:那这样说的话,Ratio loss除了在起点处略优于margin loss,在什么方面会比margin loss好呢?
  • Image transformations

This shows that synthetic deformations are less challenging for descriptors than some real-world changes as the ones found in Oxford dataset.

5 Efficiency

Tfeat,体量更小,运算更快,效果更好。

6 Summary

  • 提出了一个体量更小的模型,同时设计了一个方法使得训练结果更好
  • 阐述 ratio-loss based methods 更适合 patch pair classification, margin-loss based methodsnearest neighbour matching 表现更好。这里我怀疑是作者第一句说错了,因为在ratio-loss的在patch pair classification 测试结果(4.1 Patch pair classification)上,并没有比 margin-loss好,事实上,这篇论文里我没有找到地方证明ratio-loss在哪里优于margin-loss.....
  • a good performance on patch classification does not necessarily generalise to a good performance in nearest neighbour based frameworks.

Refer

[1] TPR FPR ROC AUC:https://zhuanlan.zhihu.com/p/100059009

[2] FPR95:https://stats.stackexchange.com/questions/481991/false-positive-rate-at-k-recall

[3] MAP:https://www.zhihu.com/question/53405779

[4] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer. Discriminative learning of deep convolutional feature point descriptors. In ICCV, 2015.

Learning local feature descriptors with triplets and shallow convolutional neural networks 论文阅读笔记的更多相关文章

  1. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  2. Sequence to Sequence Learning with Neural Networks论文阅读

    论文下载 作者(三位Google大佬)一开始提出DNN的缺点,DNN不能用于将序列映射到序列.此论文以机器翻译为例,核心模型是长短期记忆神经网络(LSTM),首先通过一个多层的LSTM将输入的语言序列 ...

  3. Learning Spread-out Local Feature Descriptors

    论文Learning Spread-out Local Feature Descriptors 为什么介绍此文:引入了一种正则化手段,结合其他网络的损失函数,尤其是最新cvpr 2018的hardne ...

  4. [论文阅读笔记] node2vec Scalable Feature Learning for Networks

    [论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWal ...

  5. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  6. Convolutional Neural Networks from deep learning (assignment 1 from week 1)

    Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welc ...

  7. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  8. Local Binary Convolutional Neural Networks ---卷积深度网络移植到嵌入式设备上?

    前言:今天他给大家带来一篇发表在CVPR 2017上的文章. 原文:LBCNN 原文代码:https://github.com/juefeix/lbcnn.torch 本文主要内容:把局部二值与卷积神 ...

  9. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals

    Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...

随机推荐

  1. 【LeetCode】387. First Unique Character in a String 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  2. 【LeetCode】744. Find Smallest Letter Greater Than Target 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 线性扫描 二分查找 日期 题目地址:https:// ...

  3. 【LeetCode】662. Maximum Width of Binary Tree 解题报告(Python)

    [LeetCode]662. Maximum Width of Binary Tree 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.co ...

  4. Following Orders(poj1270)

    Following Orders Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4436   Accepted: 1791 ...

  5. 第二十五个知识点:使用特殊的素数定义$GF(p)$和$GF(2^n)$的方法。

    第二十五个知识点:使用特殊的素数定义\(GF(p)\)和\(GF(2^n)\)的方法. 在我们之前看到的博客中,当实现密码学方案时,一个最频繁调用的操作就是模运算.不幸的是,尽管模块化的使用非常广泛, ...

  6. 「算法笔记」状压 DP

    一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...

  7. v75.01 鸿蒙内核源码分析(远程登录篇) | 内核如何接待远方的客人 | 百篇博客分析OpenHarmony源码

    子曰:"不学礼,无以立 ; 不学诗,无以言 " <论语>:季氏篇 百篇博客分析.本篇为: (远程登录篇) | 内核如何接待远方的客人 设备驱动相关篇为: v67.03 ...

  8. [c++]关于指针的一些问题记录

    const char* 和char* 之间的转换 const char*是指向常量的指针,而不是指针本身为常量,可以不被初始化.该指针可以指向常量也可以指向变量,只是从该指针的角度而言,它所指向的是常 ...

  9. [opencv]调用鼠标事件执行grabcut算法实现阈值分割

    #include<iostream> #include <opencv2/opencv.hpp> #include <math.h> using namespace ...

  10. mt19937

    额,这个是一个小记.没什么,就是记给自己看的,你可以走了. mt19937 需要 C++11.生成高质量随机数. mt19937 rnd(chrono::system_clock::now().tim ...