都说这题是 GSS 系列中最难的,今天做了一下,名副其实

首先你可以想到各种各样的在线乱搞想法,线段树,主席树,平衡树,等等,但发现都不太可行。

注意到题目也没有说强制在线,因此可以想到离线地去解决这道题。

我们把询问按照右端点从小到大排序。假设当前询问的右端点为 \(i\)。

定义 \(s_j\) 为 \([j,i]\) 中不重复数字的和。我们建一棵线段树维护 \(s_j\) 的最大值。

这样修改起来就比较自然了,当右端点从 \(i-1\) 变到 \(i\) 的时候,记 \(a_i\) 上一次出现的位置为 \(k\),那么这个 \(a_i\) 只会对 \(s_{k+1},s_{k+2},\dots,s_i\) 产生贡献,也就是说我们在线段树上 \([k+1,i]\) 位置上的数 \(+a_i\)。

询问也比较容易。询问 \((l,i)\) 的答案就是 \(s_l,s_{l+1},\dots,s_i\) 的历史最大值。

这样原题就转化为一道看起来比较可做的 DS 了,要你维护一个序列,支持:

  • 区间加
  • 区间历史最大值

之前写过一道类似的题题号什么我忘了,可现在忘了怎么做了/kk,只好看题解再推一遍。

线段树区间维护四个东西 \(mx,hmx,lz,hlz\) 表示最大值,历史最大值,区间加标记,历史最大区间加标记(历史出现过的懒标记的最大值)。

上推操作就不用说了吧,直接对 \(mx,hmx\) 取 \(\max\)。。。。。。

区间加上一个值 \(v\),那么最大值肯定也会加上 \(v\),历史最大值就和当前最大值取 \(\max\),懒标记也同理。

最复杂的就是如何下传标记。

例如我们现在有一段操作序列 \(+1-3+4-2-1+5-2\),那么此时懒标记为 \(+2\),历史最大懒标记为 \(+4\)(\(+1-3+4-2-1+4\))。

然后它的儿子当前最大值为 \(2\),历史最大值为 \(3\),当前懒标记为 \(-1\),历史最大懒标记为 \(+1\)。

那么:

  • \(mx\) 显然直接加上父亲的懒标记即可,\(2+1-3+4-2-1+5-2=2+2=4\)。
  • \(hmx\) 拿当前最大值 \(2\) 加上历史最大懒标记 \(+4\)(\(2+1-3-4-2-1+5=6\)),与原来历史最大值 \(3\) 比较。
  • \(lz\) 也是直接加上父亲的 \(lz\) 即可,\(-1+2=+1\)
  • \(hlz\) 也拿当前最大懒标记加上历史最大懒标记 \(+4\)(\(-1+1-3-4-2-1+5=+3\)),与原来历史最大懒标记 \(+1\) 比较。

最后,重中之重,下放懒标记的顺序一定要注意。

/*
Contest: -
Problem: SP1557
Author: tzc_wk
Time: 2020.8.8
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define fillsmall(a) memset(a,0xcf,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
#define int long long
typedef pair<int,int> pii;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
int n=read(),m,a[100005],ans[100005];
struct _query{
int l,r,id;
friend bool operator <(_query a,_query b){
return a.r<b.r;
}
} q[100005];
struct node{
int l,r,mx,hmx,lz,hlz;
} s[100005<<2];
inline void pushup(int k){
s[k].mx=max(s[k<<1].mx,s[k<<1|1].mx);
s[k].hmx=max(s[k<<1].hmx,s[k<<1|1].hmx);
}
inline void build(int k,int l,int r){
s[k].l=l;s[k].r=r;
if(l==r) return;
int mid=(l+r)>>1;
build(k<<1,l,mid);build(k<<1|1,mid+1,r);
}
inline void pushdown(int k){
s[k<<1].hmx=max(s[k<<1].hmx,s[k<<1].mx+s[k].hlz);
s[k<<1|1].hmx=max(s[k<<1|1].hmx,s[k<<1|1].mx+s[k].hlz);
s[k<<1].mx+=s[k].lz;
s[k<<1|1].mx+=s[k].lz;
s[k<<1].hlz=max(s[k<<1].hlz,s[k<<1].lz+s[k].hlz);
s[k<<1|1].hlz=max(s[k<<1|1].hlz,s[k<<1|1].lz+s[k].hlz);
s[k<<1].lz=s[k<<1].lz+s[k].lz;
s[k<<1|1].lz=s[k<<1|1].lz+s[k].lz;
s[k].lz=s[k].hlz=0;
}
inline void add(int k,int l,int r,int x){
if(l<=s[k].l&&s[k].r<=r){
s[k].mx+=x;s[k].hmx=max(s[k].hmx,s[k].mx);
s[k].lz+=x;s[k].hlz=max(s[k].hlz,s[k].lz);
return;
}
pushdown(k);
int mid=(s[k].l+s[k].r)>>1;
if(r<=mid) add(k<<1,l,r,x);
else if(l>mid) add(k<<1|1,l,r,x);
else add(k<<1,l,mid,x),add(k<<1|1,mid+1,r,x);
pushup(k);
}
inline int query(int k,int l,int r){
if(l<=s[k].l&&s[k].r<=r){
return s[k].hmx;
}
pushdown(k);
int mid=(s[k].l+s[k].r)>>1;
if(r<=mid) return query(k<<1,l,r);
else if(l>mid) return query(k<<1|1,l,r);
else return max(query(k<<1,l,mid),query(k<<1|1,mid+1,r));
}
map<int,int> mp;
signed main(){
fz(i,1,n) a[i]=read();
m=read();fz(i,1,m) q[i].l=read(),q[i].r=read(),q[i].id=i;
sort(q+1,q+m+1);
build(1,1,n);
int cur=1;
fz(i,1,n){
add(1,mp[a[i]]+1,i,a[i]);mp[a[i]]=i;
while(cur<=m&&q[cur].r<=i){
ans[q[cur].id]=query(1,q[cur].l,q[cur].r);cur++;
}
}
fz(i,1,m) printf("%lld\n",ans[i]);
return 0;
}

SPOJ 1557 GSS2 - Can you answer these queries II (线段树+维护历史最值)的更多相关文章

  1. bzoj 2482: [Spoj GSS2] Can you answer these queries II 线段树

    2482: [Spoj1557] Can you answer these queries II Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 145 ...

  2. spoj 1557 GSS3 - Can you answer these queries III 线段树

    题目链接 给出n个数, 2种操作, 一种是将第x个数改为y, 第二种是询问区间[x,y]内的最大连续子区间. 开4个数组, 一个是区间和, 一个是区间最大值, 一个是后缀的最大值, 一个是前缀的最大值 ...

  3. SPOJ GSS2 Can you answer these queries II ——线段树

    [题目分析] 线段树,好强! 首先从左往右依次扫描,线段树维护一下f[].f[i]表示从i到当前位置的和的值. 然后询问按照右端点排序,扫到一个位置,就相当于查询区间历史最值. 关于历史最值问题: 标 ...

  4. SPOJ 1557. Can you answer these queries II 线段树

    Can you answer these queries II Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 https://www.spoj.com/pr ...

  5. 【BZOJ2482】[Spoj1557] Can you answer these queries II 线段树

    [BZOJ2482][Spoj1557] Can you answer these queries II Description 给定n个元素的序列. 给出m个询问:求l[i]~r[i]的最大子段和( ...

  6. SPOJ GSS1 - Can you answer these queries I(线段树维护GSS)

    Can you answer these queries I SPOJ - GSS1 You are given a sequence A[1], A[2], -, A[N] . ( |A[i]| ≤ ...

  7. SPOJ - GSS1-Can you answer these queries I 线段树维护区间连续和最大值

    SPOJ - GSS1:https://vjudge.net/problem/SPOJ-GSS1 参考:http://www.cnblogs.com/shanyr/p/5710152.html?utm ...

  8. Spoj 1557 Can you answer these queries II 线段树 随意区间最大子段和 不反复数字

    题目链接:点击打开链接 每一个点都是最大值,把一整个序列和都压缩在一个点里. 1.普通的区间求和就是维护2个值,区间和Sum和延迟标志Lazy 2.Old 是该区间里出现过最大的Sum, Oldlaz ...

  9. SPOJ GSS2 - Can you answer these queries II(线段树 区间修改+区间查询)(后缀和)

    GSS2 - Can you answer these queries II #tree Being a completist and a simplist, kid Yang Zhe cannot ...

随机推荐

  1. 这部分布式事务开山之作,凭啥第一天预售就拿下当当新书榜No.1?

    大家好,我是冰河~~ 今天,咱们就暂时不聊[精通高并发系列]了,今天插播一下分布式事务,为啥?因为冰河联合猫大人共同创作的分布式事务领域的开山之作--<深入理解分布式事务:原理与实战>一书 ...

  2. WEB安全指南

    说明:本文是Mozilla Web应用部署文档,对运维或者后端开发团队的部署行为进行指导.该部署安全规范内容充实,对于部署有很大意义.同时也涉及到了许多web前端应用安全的基本知识,如CSP, TOK ...

  3. tomcat内存马原理解析及实现

    内存马 简介 ​ Webshell内存马,是在内存中写入恶意后门和木马并执行,达到远程控制Web服务器的一类内存马,其瞄准了企业的对外窗口:网站.应用.但传统的Webshell都是基于文件类型的,黑客 ...

  4. Java版人脸检测详解下篇:编码

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. [软工顶级理解组] Beta阶段项目展示

    目录 团队成员 软件介绍 项目简介 预期典型用户 功能描述 预期目标用户数 用户反馈 团队管理 分工协作 项目管理 取舍平衡 代码管理 程序测试 代码规范 文档撰写 继续开发指导性 用户沟通 需求分析 ...

  6. 2019.03.27【GDOI2019】模拟 T3

    题目大意 给出$n$, $p$, 求有多少长度为$n$的排列可以被分成三个上升子序列, 数量对$p$取模, 数据范围 $3 \leq n \leq 500$. 思路 首先让我们考虑如果有一个排列,如何 ...

  7. PCB中,Solder Mask与Paste Mask有啥区别呢?

    Solder Mask Layers: 即阻焊层.顾名思义,他的存在是为了防止PCB在过波峰焊的时候,不应涂锡的地方粘上锡. 可以简单理解为一个洞,该区域(洞)以外的地方,都不允许有焊锡,即只能涂绿油 ...

  8. 国产Linux服务器-Jexus的初步使用

    题记:年末研究了一些关于Net跨平台的东西,没错,就是Jexus,就是Windows下面的IIS. 官网:https://www.jexus.org/ 先看看官网的解释再说其他的问题,Jexus就是L ...

  9. Python Numpy matplotlib Histograms 直方图

    import numpy as np import matplotlib.pyplot as plt mu,sigma = 2,0.5 v = np.random.normal(mu,sigma,10 ...

  10. Cnetos 8 DNS解析慢

    参考链接:https://blog.csdn.net/u014401141/article/details/105869242/ 修改 /etc/resolv.conf配置文件,最上方加入 optio ...