Occasionally the average developer runs into a situation where he has to map values of arbitrary types within a particular container. However the Java collection API provides container related parameterization only. Which limits the type safe usage of HashMap for example to a single value type. But what if you want to mix apples and pears?

Luckily there is an easy design pattern that allows to map distinct value types using Java generics, which Joshua Bloch has described as typesafe hetereogeneous container in his book Effective Java (second edition, Item 29).

Stumbling across some not altogether congenial solutions regarding this topic recently, gave me the idea to explain the problem domain and elaborate on some implementation aspects in this post.

Map Distinct Value Types Using Java Generics

Consider for the sake of example that you have to provide some kind of application context that allows to bind values of arbitrary types to certain keys. A simple non type safe implementation using String keys backed by a HashMap might look like this:

public class Context {

  private final Map<String,Object> values = new HashMap<>();

  public void put( String key, Object value ) {
values.put( key, value );
} public Object get( String key ) {
return values.get( key );
} [...]
}

The following snippet shows how this Context can be used in a program:

Context context = new Context();
Runnable runnable = ...
context.put( "key", runnable ); // several computation cycles later...
Runnable value = ( Runnable )context.get( "key" );

The drawback of this approach can be seen at line six where a down cast is needed. Obviously this can lead to a ClassCastException in case the key-value pair has been replaced by a different value type:

Context context = new Context();
Runnable runnable = ...
context.put( "key", runnable ); // several computation cycles later...
Executor executor = ...
context.put( "key", executor ); // even more computation cycles later...
Runnable value = ( Runnable )context.get( "key" ); // runtime problem

The cause of such problems can be difficult to trace as the related implementation steps might be spread wide apart in your application. To improve the situation it seems reasonable to bind the value not only to its key but also to its type.

Common mistakes I saw in several solutions following this approach boil down more or less to the following Context variant:

public class Context {

  private final <String, Object> values = new HashMap<>();

  public <T> void put( String key, T value, Class<T> valueType ) {
values.put( key, value );
} public <T> T get( String key, Class<T> valueType ) {
return ( T )values.get( key );
} [...]
}

Again basic usage might look like this:

Context context = new Context();
Runnable runnable = ...
context.put( "key", runnable, Runnable.class ); // several computation cycles later...
Runnable value = context.get( "key", Runnable.class );

One first glance this code might give the illusion of being more type save as it avoids the down cast in line six. But running the following snippet gets us down to earth as we still run into the ClassCastException scenario during the assignment in line ten:

Context context = new Context();
Runnable runnable = ...
context.put( "key", runnable, Runnable.class ); // several computation cycles later...
Executor executor = ...
context.put( "key", executor, Executor.class ); // even more computation cycles later...
Runnable value = context.get( "key", Runnable.class ); // runtime problem

So what went wrong?

First of all the down cast in Context#get of type T is ineffective as type erasure replaces unbounded parameters with a static cast to Object. But more important the implementation does not use the type information provided by Context#put as key. At most it serves as superfluous cosmetic effect.

Typesafe Hetereogeneous Container

Although the last Context variant did not work out very well it points into the right direction. The question is how to properly parameterize the key? To answer this take a look at a stripped-down implementation according to the typesafe hetereogenous container pattern described by Bloch.

The idea is to use the class type as key itself. Since Class is a parameterized type it enables us to make the methods of Context type safe without resorting to an unchecked cast to T. A Class object used in this fashion is called a type token.

public class Context {

  private final Map<Class<?>, Object> values = new HashMap<>();

  public <T> void put( Class<T> key, T value ) {
values.put( key, value );
} public <T> T get( Class<T> key ) {
return key.cast( values.get( key ) );
} [...]
}

Note how the down cast within the Context#get implementation has been replaced with an effective dynamic variant. And this is how the context can be used by clients:

Context context = new Context();
Runnable runnable ...
context.put( Runnable.class, runnable ); // several computation cycles later...
Executor executor = ...
context.put( Executor.class, executor ); // even more computation cycles later...
Runnable value = context.get( Runnable.class );

This time the client code will work without class cast problems, as it is impossible to exchange a certain key-value pair by one with a different value type.

Bloch mentions two limitations to this pattern. ‘First, a malicious client could easily corrupt the type safety […] by using a class object in its raw form.’ To ensure the type invariant at runtime a dynamic cast can be used within Context#put.

public <T> void put( Class<T> key, T value ) {
values.put( key, key.cast( value ) );
}

The second limitation is that the pattern cannot be used on non-reifiable types (see Item 25, Effective Java). Which means you can store value types like Runnable or Runnable[] but not List<Runnable> in a type safe manner.

This is because there is no particular class object for List<Runnable>. All parameterized types refer to the same List.class object. Hence Bloch points out that there is no satisfactory workaround for this kind of limitation.

But what if you need to store two entries of the same value type? While creating new type extensions just for storage purpose into the type safe container might be imaginable, it does not sound as the best design decision. Using a custom key implementation might be a better approach.

Multiple Container Entries of the Same Type

To be able to store multiple container entries of the same type we could change the Context class to use a custom key. Such a key has to provide the type information we need for the type safe behaviour and an identifier for distinction of the actual value objects.

A naive key implementation using a String instance as identifier might look like this:

public class Key<T> {

  final String identifier;
final Class<T> type; public Key( String identifier, Class<T> type ) {
this.identifier = identifier;
this.type = type;
}
}

Again we use the parameterized Class as hook to the type information. And the adjusted Context now uses the parameterized Key instead of Class:

public class Context {

  private final Map<Key<?>, Object> values = new HashMap<>();

  public <T> void put( Key<T> key, T value ) {
values.put( key, value );
} public <T> T get( Key<T> key ) {
return key.type.cast( values.get( key ) );
} [...]
}

A client would use this version of Context like this:

Context context = new Context();

Runnable runnable1 = ...
Key<Runnable> key1 = new Key<>( "id1", Runnable.class );
context.put( key1, runnable1 ); Runnable runnable2 = ...
Key<Runnable> key2 = new Key<>( "id2", Runnable.class );
context.put( key2, runnable2 ); // several computation cycles later...
Runnable actual = context.get( key1 ); assertThat( actual ).isSameAs( runnable1 );

Although this snippet works, the implementation is still flawed. The Key implementation is used as lookup parameter in Context#get. Using two distinct instances of Key initialized with the same identifier and class – one instance used with put and the other used with get – would return null on get. Which is not what we want.

Luckily this can be solved easily with an appropriate equals and hashCode implementation of Key. That allows the HashMap lookup to work as expected.

具体如何写hashCodeequals参见前一篇 Hash Map

Finally one might provide a factory method for key creation to minimize boilerplate (useful in combination with static imports):

public static  Key key( String identifier, Class type ) {
return new Key( identifier, type );
}

Conclusion

‘The normal use of generics, exemplified by the collection APIs, restricts you to a fixed number of type parameters per container. You can get around this restriction by placing the type parameter on the key rather than the container. You can use Class objects as keys for such typesafe heterogeneous containers’ (Joshua Bloch, Item 29, Effective Java).

Given these closing remarks, there is nothing left to be added except for wishing you good luck mixing apples and pears successfully…

Reference

译文链接

【Java 基础】Java Map中的Value值如何做到可以为任意类型的值的更多相关文章

  1. (转载)Java Map中的Value值如何做到可以为任意类型的值

    转载地址:http://www.importnew.com/15556.html     如有侵权,请联系作者及时删除. 搬到我的博客来,有空细细品味,把玩. 本文由 ImportNew - shut ...

  2. Java基础-Java中23种设计模式之常用的设计模式

    Java基础-Java中23种设计模式之常用的设计模式 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   一.设计模式分类 设计模式是针对特定场景给出的专家级的解决方案.总的来说设 ...

  3. Java基础-JAVA中常见的数据结构介绍

    Java基础-JAVA中常见的数据结构介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.什么是数据结构 答:数据结构是指数据存储的组织方式.大致上分为线性表.栈(Stack) ...

  4. Java基础关于Map(字典)的方法使用

    Java基础关于Map(字典)的方法使用 java中一般用map与hashmap来创建一个key-value对象 使用前提是要导入方法包: import java.util.HashMap: impo ...

  5. java基础(20):Map、可变参数、Collections

    1. Map接口 1.1 Map接口概述 我们通过查看Map接口描述,发现Map接口下的集合与Collection接口下的集合,它们存储数据的形式不同,如下图. Collection中的集合,元素是孤 ...

  6. 怎么在java 8的map中使用stream

    怎么在java 8的map中使用stream 简介 Map是java中非常常用的一个集合类型,我们通常也需要去遍历Map去获取某些值,java 8引入了Stream的概念,那么我们怎么在Map中使用S ...

  7. JAVA基础篇NO2--Java中的基本命名规则及数据类型

    1.Java中的常量及进制 1.常量: 在程序运行的过程中,不可以改变的量,就是常量 boolean类型的值只能是true或者false null: 空常量, 代表不存在! ------------- ...

  8. java基础---->java中正则表达式二

    跟正则表达式相关的类有:Pattern.Matcher和String.今天我们就开始Java中正则表达式的学习. Pattern和Matcher的理解 一.正则表达式的使用方法 一般推荐使用的方式如下 ...

  9. Java基础-Java中的堆内存和离堆内存机制

    Java基础-Java中的堆内存和离堆内存机制 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

随机推荐

  1. celery config

    /* Useful celery config. app = Celery('tasks', broker='redis://localhost:6379', backend='redis://loc ...

  2. 第五周PTA笔记 后缀表达式+后缀表达式计算

    后缀表达式 所谓后缀表达式是指这样的一个表达式:式中不再引用括号,运算符号放在两个运算对象之后,所有计算按运算符号出现的顺序,严格地由左而右进行(不用考虑运算符的优先级). 如:中缀表达式 3(5–2 ...

  3. 动手写一个简单的Web框架(模板渲染)

    动手写一个简单的Web框架(模板渲染) 在百度上搜索jinja2,显示的大部分内容都是jinja2的渲染语法,这个不是Web框架需要做的事,最终,居然在Werkzeug的官方文档里找到模板渲染的代码. ...

  4. 美化CMD

    配置 Windows Terminal 的步骤 前提:在微软商店下载两个软件 Windows Terminal PowerShell(因为最好使用 PowerShell7 ,否则以下命令可能执行不了) ...

  5. 获取鼠标在 canvas 中的位置

    一般情况 一般情况下,如果需要在 canvas 中获取鼠标指针坐标,可以通过监听鼠标的 mousemove(如果只需单击时的坐标,可以用 click)事件. 当事件被触发时,我们可以获取鼠标相对于 v ...

  6. C 语言基础,来喽!

    前言 C 语言是一门抽象的.面向过程的语言,C 语言广泛应用于底层开发,C 语言在计算机体系中占据着不可替代的作用,可以说 C 语言是编程的基础,也就是说,不管你学习任何语言,都应该把 C 语言放在首 ...

  7. Python基础(获取对象信息)

    import types print(type('abc') == str)#True print(type(123) == int)#True def f1(): pass print(type(f ...

  8. python-变量&底层存储原理

    目录 1.变量 1.变量如何使用 2.变量存储的原理 --[ 重点 ] 3.变量存储要遵循印射关系 4.变量三要素 2.常量 3.底层优化 4.垃圾回收机制 1.变量 1.变量如何使用 1.什么是变量 ...

  9. 让textarea根据文本的长度自动调整它的高度

    ... <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR ...

  10. Redis | 第一部分:数据结构与对象 上篇《Redis设计与实现》

    目录 前言 1. 简单动态字符串 1.1 SDS的定义 1.2 空间预分配与惰性空间释放 1.3 SDS的API 2. 链表 2.1 链表与节点的定义 2.2 链表的API 3. 字典 3.1 哈希表 ...