需求:导入9999行数据时Dapper, Ef core, Freesql 谁的性能更优,是如何执行的,级联增加谁性能更佳。

确认方法:sql server 的 sys.dm_exec_query_stats

SELECT TOP 1000 (select [text] from sys.dm_exec_sql_text(QS.sql_handle)) as '数据库语句',
QS.execution_count AS '执行次数',
QS.total_elapsed_time AS '耗时',
QS.total_logical_reads AS '逻辑读取次数',
QS.total_logical_writes AS '逻辑写入次数',
QS.total_physical_reads AS '物理读取次数',
QS.creation_time AS '执行时间',
*
FROM sys.dm_exec_query_stats QS
WHERE QS.creation_time > '2021-04-11 09:42:30'

准备:创建表

CREATE TABLE [dbo].[TestAddSortByXXXX](
[Id] [int] IDENTITY(1,1) NOT NULL,
[No] [int] NULL,
[Col1] [nvarchar](50) NULL,
[Col2] [nvarchar](50) NULL,
[Col3] [nvarchar](50) NULL,
[Col4] [nvarchar](50) NULL,
[Col5] [nvarchar](50) NULL,
[Col6] [nvarchar](50) NULL,
[Col7] [nvarchar](50) NULL,
[Col8] [nvarchar](50) NULL,
[Col9] [nvarchar](50) NULL,
[Col10] [nvarchar](50) NULL,
CONSTRAINT [PK_TestAddSortByXXXX] PRIMARY KEY CLUSTERED
(
[Id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
CREATE TABLE [dbo].[TestAddSortByXXXXSub](
[Id] [int] IDENTITY(1,1) NOT NULL,
[Id2] [int] NULL,
[Col1] [nvarchar](50) NULL,
[Col2] [nvarchar](50) NULL,
[Col3] [nvarchar](50) NULL,
[Col4] [nvarchar](50) NULL,
[Col5] [nvarchar](50) NULL,
[Col6] [nvarchar](50) NULL,
[Col7] [nvarchar](50) NULL,
[Col8] [nvarchar](50) NULL,
[Col9] [nvarchar](50) NULL,
[Col10] [nvarchar](50) NULL,
CONSTRAINT [PK_TestAddSortByXXXXSub] PRIMARY KEY CLUSTERED
(
[Id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

构建9999行数据

List<Entity> datas = new List<Entity>();
for (int i = 0; i < 9999; i++)
{
  var item = new Entity
  {
    No = i + 1,
    Col1 = Guid.NewGuid().ToString("N"),
    Col2 = Guid.NewGuid().ToString("N"),
    Col3 = Guid.NewGuid().ToString("N"),
    Col4 = Guid.NewGuid().ToString("N"),
    Col5 = Guid.NewGuid().ToString("N"),
    Col6 = Guid.NewGuid().ToString("N"),
    Col7 = Guid.NewGuid().ToString("N"),
    Col8 = Guid.NewGuid().ToString("N"),
    Col9 = Guid.NewGuid().ToString("N"),
    Col10 = Guid.NewGuid().ToString("N"),
  };
  datas.Add(item);
}

Dapper:

static void AddDataByDapper(List<Entity> datas)
{
int r = 0;
Stopwatch sw = new Stopwatch();
sw.Start();
using (var conn = new SqlConnection(connString))
{
conn.Open();
string sql = "insert into TestAddSortByDapper([No], Col1, Col2, Col3, Col4, Col5, Col6, Col7, Col8, Col9, Col10) values(@No, @Col1, @Col2, @Col3, @Col4, @Col5, @Col6, @Col7, @Col8, @Col9, @Col10);";
r = conn.Execute(sql, datas);
}
sw.Stop();
Console.WriteLine($"通过 Dapper 导入数据{r}行 毫时{sw.ElapsedMilliseconds}");
}

执行结果总结

-- 数据库实际执行数据
(@Col1 nvarchar(4000),@Col10 nvarchar(4000),...)
insert into TestAddSortByDapper([No], Col1, Col2, Col3, Col4, Col5, Col6, Col7, Col8, Col9, Col10)
values(@No, @Col1, @Col2, @Col3, @Col4, @Col5, @Col6, @Col7, @Col8, @Col9, @Col10);

从结果我们可以看到,dapper使用的是 insert into table () values () 方式循环执行9999次,代码总耗时3-4秒。

EfCore:

static void AddDataByEfCore(List<Entity> datas)
{
int r1 = 0;
Stopwatch sw = new Stopwatch();
sw.Start();
using (var db = new TestContext())
{
db.Entity.AddRange(datas);
r1 = db.SaveChanges();
}
sw.Stop();
Console.WriteLine($"通过 EfCore 导入数据{r1}行 毫时{sw.ElapsedMilliseconds}");
}
[Table("TestAddSortByEfCore")]
public class Entity
{
public int Id { get; set; }
public int No { get; set; }
public string Col1 { get; set; }
public string Col2 { get; set; }
public string Col3 { get; set; }
public string Col4 { get; set; }
public string Col5 { get; set; }
public string Col6 { get; set; }
public string Col7 { get; set; }
public string Col8 { get; set; }
public string Col9 { get; set; }
public string Col10 { get; set; }
}

执行结果总结

(@p0 nvarchar(4000),@p1 nvarchar(4000),...,@p460 nvarchar(4000),@p461 int)
SET NOCOUNT ON;
DECLARE @inserted0 TABLE ([Id] int, [_Position] [int]);
MERGE [TestAddSortByEfCore] USING (
VALUES (@p0, @p1, @p2, @p3, @p4, @p5, @p6, @p7, @p8, @p9, @p10, 0),..., (@p451, @p452, @p453, @p454, @p455, @p456, @p457, @p458, @p459, @p460, @p461, 41)
) AS i ([Col1], [Col10], [Col2], [Col3], [Col4], [Col5], [Col6], [Col7], [Col8], [Col9], [No], _Position) ON 1=0
WHEN NOT MATCHED THEN
INSERT ([Col1], [Col10], [Col2], [Col3], [Col4], [Col5], [Col6], [Col7], [Col8], [Col9], [No])
VALUES (i.[Col1], i.[Col10], i.[Col2], i.[Col3], i.[Col4], i.[Col5], i.[Col6], i.[Col7], i.[Col8], i.[Col9], i.[No])
OUTPUT INSERTED.[Id], i._Position INTO @inserted0;
SELECT [t].[Id] FROM [TestAddSortByEfCore] t INNER JOIN @inserted0 i ON ([t].[Id] = [i].[Id]) ORDER BY [i].[_Position];

从结果我们可以看到,EfCore使用的是 Merge 方式增加数据,但数据库变量最多定义462个,所以每次只能增加42行数据,执行了238+3次,但最大的疑问是执行了两次,而且插入表数据顺序错了(估计是EfCore代码上使用了Parallel.For方法,有懂的朋友能否解答一下),代码总耗时4-5秒。

Freesql:

static void AddDataByEfCore(List<Entity> datas)
{
int r1 = 0;
Stopwatch sw = new Stopwatch();
sw.Start();
using (var db = new TestContext())
{
db.Entity.AddRange(datas);
r1 = db.SaveChanges();
}
sw.Stop();
Console.WriteLine($"通过 EfCore 导入数据{r1}行 毫时{sw.ElapsedMilliseconds}");
}
[FreeSql.DataAnnotations.Table(Name = "TestAddSortByFreesql", DisableSyncStructure = true)]
public class Entity
{
[FreeSql.DataAnnotations.Column(Name = "id", IsPrimary = true, IsIdentity = true)]
public int Id { get; set; }
public int No { get; set; }
public string Col1 { get; set; }
public string Col2 { get; set; }
public string Col3 { get; set; }
public string Col4 { get; set; }
public string Col5 { get; set; }
public string Col6 { get; set; }
public string Col7 { get; set; }
public string Col8 { get; set; }
public string Col9 { get; set; }
public string Col10 { get; set; }
}

执行结果总结

(@No_0 int,@Col1_0 nvarchar(32),...,@Col10_173 nvarchar(32))
INSERT INTO [TestAddSortByFreesql]([No], [Col1], [Col2], [Col3], [Col4], [Col5], [Col6], [Col7], [Col8], [Col9], [Col10])
VALUES(@No_0, @Col1_0, @Col2_0, @Col3_0, @Col4_0, @Col5_0, @Col6_0, @Col7_0, @Col8_0, @Col9_0, @Col10_0), ..., (@No_173, @Col1_173, @Col2_173, @Col3_173, @Col4_173, @Col5_173, @Col6_173, @Col7_173, @Col8_173, @Col9_173, @Col10_173)

从结果我们可以看到,freesql使用的是 insert into table () values (), () 方式循环执行,每次最多增加173行数据,代码总耗时7-8秒。

从目前结果来看,单表增加大量数据,时间上 Dapper > EfCore > Freesql。

ADO.NET SqlBulkCopy 复制(最优方案)

static void AddDataByBulkCopy(List<Entity> datas)
{
Stopwatch sw = new Stopwatch();
var dt = new DataTable();
dt.Columns.Add("No", typeof(int));
dt.Columns.Add("Col1", typeof(string));
dt.Columns.Add("Col2", typeof(string));
dt.Columns.Add("Col3", typeof(string));
dt.Columns.Add("Col4", typeof(string));
dt.Columns.Add("Col5", typeof(string));
dt.Columns.Add("Col6", typeof(string));
dt.Columns.Add("Col7", typeof(string));
dt.Columns.Add("Col8", typeof(string));
dt.Columns.Add("Col9", typeof(string));
dt.Columns.Add("Col10", typeof(string));
foreach (var item in datas)
{
var dr = dt.NewRow();
dr["No"] = item.No;
dr["Col1"] = item.Col1;
dr["Col2"] = item.Col2;
dr["Col3"] = item.Col3;
dr["Col4"] = item.Col4;
dr["Col5"] = item.Col5;
dr["Col6"] = item.Col6;
dr["Col7"] = item.Col7;
dr["Col8"] = item.Col8;
dr["Col9"] = item.Col9;
dr["Col10"] = item.Col10;
dt.Rows.Add(dr);
}
sw.Start();
using (SqlConnection cn = new SqlConnection(connString))
{
cn.Open();
using (SqlBulkCopy sqlBulkCopy = new SqlBulkCopy(cn))
{
sqlBulkCopy.BatchSize = dt.Rows.Count;
sqlBulkCopy.BulkCopyTimeout = 1800;
sqlBulkCopy.DestinationTableName = "TestAddSortByBulkCopy"; sqlBulkCopy.ColumnMappings.Add("No", "No");
sqlBulkCopy.ColumnMappings.Add("Col1", "Col1");
sqlBulkCopy.ColumnMappings.Add("Col2", "Col2");
sqlBulkCopy.ColumnMappings.Add("Col3", "Col3");
sqlBulkCopy.ColumnMappings.Add("Col4", "Col4");
sqlBulkCopy.ColumnMappings.Add("Col5", "Col5");
sqlBulkCopy.ColumnMappings.Add("Col6", "Col6");
sqlBulkCopy.ColumnMappings.Add("Col7", "Col7");
sqlBulkCopy.ColumnMappings.Add("Col8", "Col8");
sqlBulkCopy.ColumnMappings.Add("Col9", "Col9");
sqlBulkCopy.ColumnMappings.Add("Col10", "Col10");
sqlBulkCopy.WriteToServer(dt);
}
}
sw.Stop();
Console.WriteLine($"通过 BulkCopy 毫时{sw.ElapsedMilliseconds}");
}

执行结果总结

并没有在 sys.dm_exec_query_stats 上产生结果,但他的性能是最佳的。

下一篇,来看看级联操作上谁能更胜一筹。

Dapper, Ef core, Freesql 插入大量数据性能比较(一)的更多相关文章

  1. Dapper, Ef core, Freesql 插入大量数据性能比较(二)

    在上一篇文章中,我们比较出单表插入9999行数据,Dapper > EfCore > Freesql.在本文中,我们来看看级联插入 构建9999行数据 List<Entity> ...

  2. c# 国内外ORM 框架 dapper efcore sqlsugar freesql hisql sqlserver数据常规插入测试性能对比

    c# 国内外ORM 框架 dapper efcore sqlsugar freesql hisql sqlserver数据常规插入测试性能对比对比 在6.22 号发布了 c# sqlsugar,his ...

  3. EF Core利用Transaction对数据进行回滚保护

    What? 首先,说一下什么是EF Core中的Transaction Transaction允许以原子方式处理多个数据库操作,如果事务已提交,则所有操作都应用于数据库,如果事务回滚,则没有任何操作应 ...

  4. EF Core 使用编译查询提高性能

    今天,我将向您展示这些EF Core中一个很酷的功能,通过使用显式编译的查询,提高查询性能. 不过在介绍具体内容之前,需要说明一点,EF Core已经对表达式的编译使用了缓存:当您的代码需要重用以前执 ...

  5. Sqlite3插入大量数据性能优化

    近期做的一个项目数据量很大.文本数据有30多M.这样就遇到一个问题.插入数据库时很慢. 这里记录下,优化方法很easy. 原文地址:http://blog.csdn.net/qqmcy/article ...

  6. 深入理解 EF Core:EF Core 读取数据时发生了什么?

    阅读本文大概需要 11 分钟. 原文:https://bit.ly/2UMiDLb 作者:Jon P Smith 翻译:王亮 声明:我翻译技术文章不是逐句翻译的,而是根据我自己的理解来表述的.其中可能 ...

  7. 深入理解 EF Core:使用查询过滤器实现数据软删除

    原文:https://bit.ly/2Cy3J5f 作者:Jon P Smith 翻译:王亮 声明:我翻译技术文章不是逐句翻译的,而是根据我自己的理解来表述的.其中可能会去除一些本人实在不知道如何组织 ...

  8. 【.NET 6】使用EF Core 访问Oracle+Mysql+PostgreSQL并进行简单增改操作与性能比较

     前言 唠嗑一下.都在说去O或者开源,但是对于数据库选型来说,很多人却存在着误区.例如,去O,狭义上讲,是去Oracle数据库.但是从广义上来说,是去Oracle公司产品或者具有漂亮国垄断地位和需要商 ...

  9. ef core数据迁移的一点小感悟

    ef core在针对mysql数据迁移的时候,有些时候没法迁移...有两种情况没法迁移,一种是因为efcore的bug问题导致没法迁移,这个在github上有个问题集,另外一种是对数据表进行较大幅度的 ...

随机推荐

  1. JavaScript Semicolon Insertion

    JavaScript Semicolon Insertion https://blog.izs.me/2010/12/an-open-letter-to-javascript-leaders-rega ...

  2. js 动态构建style

    使用创建style的方式 btn.addEventListener("click", async () => { const ns = document.createElem ...

  3. PAUL ADAMS ARCHITECT:薪资追不上房价美一半家庭难买房

    尽管上一年度美国经济遭受重创,但美国房价依旧持续蹿扬,据最新调查显示,美国大部分地区的房价已经到了一般家庭无法负担的水准. 美国房价上涨持续强劲,主要受益美国人居家办公需求(受大环境影响,目前美国有7 ...

  4. 统一数据管理工具 —— CloudQuery v1.3.3 上线!

    前言 岁末临近,让我们跟随着新春的脚步,一起去看看 CloudQuery 今年最后一次更新吧! 新增功能 一.Oracle - 查看表结构 Oracle 数据源中,可查看各表结构信息(列详情和表注释等 ...

  5. spring-ioc注解-理解2 零配置文件

    没有xml配置文件下的对象注入,使用到一个Teacher类,Config配置类,Test测试类. 1.Teacher类 import lombok.Data; import org.springfra ...

  6. Vue学习笔记-vue-element-admin 按装报错再按装

    一  使用环境 开发系统: windows 后端IDE: PyCharm 前端IDE: VSCode 数据库: msyql,navicat 编程语言: python3.7  (Windows x86- ...

  7. Bootstrap下拉菜单、按钮式下拉菜单

    1. 概述 下拉菜单使用频率也是比较高的,比较常见的使用场景是在导航菜单栏,某个主菜单含有下拉的子菜单. Bootstrap为下拉菜单提供了两种实现方式,即普通的下拉菜单还有按钮式的下拉菜单.我们先看 ...

  8. 用 Hugo 快速搭建博客

    用 Hugo 搭建博客 Hugo 是一个用 Go 编写的静态站点生成器,生成速度很快 下面是具体操作: 1.安装 Hugo Windows 用户 使用 Chocolatey 或者 Scoop 快速安装 ...

  9. mpvue 开发微信小程序搭建项目

    首先 mpvue 是一款基于vue的框架,mpvue 修改了 Vue.js 的 runtime 和 compile 实现,可以运行在小程序的环境中. 第一步:安装 vue-cli vue-cli是vu ...

  10. css 超过一行省略号

    //超过一行省略号 overflow: hidden; white-space: nowrap; text-overflow: ellipsis; //超过两行省略号 overflow: hidden ...