0.关于

为缩短篇幅,本系列记录如下:

再谈多线程模型之生产者消费者(基础概念)(c++11实现)

再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现)本文

再谈多线程模型之生产者消费者(单一生产者和多消费者)(c++11实现)

再谈多线程模型之生产者消费者(多生产者和单一消费者 )(c++11实现)

再谈多线程模型之生产者消费者(多生产者和多消费者 )(c++11实现)

再谈多线程模型之生产者消费者(总结)(c++11实现)

本文涉及到的代码演示环境: VS2017

欢迎留言指正

1.单一生产者 & 单一消费者

  • 1.1 因为只有单一的生产者和消费者,所以,同步的也只有他们俩,互斥仅仅存在消费者和生产者之间,生产者(消费者)之间不存在互斥?一个对象怎么谈互斥?自己与自己互斥? 显然,这是一个假命题。所以,这个模型中,互斥存在生产者与消费者。
  • 1.2 一个结构帮你了解,
struct repo_
{
// 用作互斥访问缓冲区
std::mutex _mtx_queue; // 缓冲区最大size
unsigned int _count_max_queue_10 = 10; // 缓冲区
std::queue<int> _queue; // 缓冲区没有满,通知生产者继续生产
std::condition_variable _cv_queue_not_full; // 缓冲区不为空,通知消费者继续消费
std::condition_variable _cv_queue_not_empty; repo_(const unsigned int count_max_queue = 10) :_count_max_queue_10(count_max_queue) {}
};
  • 1.3 生产者流程: 1.等待缓冲区没有满信号,2.生产数据放入缓冲区,3.通知消费者可以取数据。
template <typename T>
void thread_produce_item(const int &thread_index, repo<T>& param_repo, const T& repo_item)
{
std::unique_lock<std::mutex> lock(param_repo._mtx_queue); // 1. 生产者只要发现缓冲区没有满, 就继续生产
param_repo._cv_queue_not_full.wait(lock, [&] { return param_repo._queue.size() < param_repo._count_max_queue_10; }); // 2. 将生产好的商品放入缓冲区
param_repo._queue.push(repo_item); // log to console
std::cout << "生产者" << thread_index << "生产数据:" << repo_item << "\n"; // 3. 通知消费者可以消费了
param_repo._cv_queue_not_empty.notify_one();
}
  • 1.4 消费者流程: 1.等待缓冲区不为空信号,2.从缓冲区中消费数据,3.通知生产者继续生产数据。
template <typename T>
T thread_consume_item(const int thread_index, repo<T>& param_repo)
{
std::unique_lock<std::mutex> lock(param_repo._mtx_queue); // 1. 消费者需要等待【缓冲区不为空】的信号
param_repo._cv_queue_not_empty.wait(lock, [&] {return !param_repo._queue.empty(); }); // 2. 拿出数据
T item;
item = param_repo._queue.front();
param_repo._queue.pop(); std::cout << "消费者" << thread_index << "从缓冲区中拿出一组数据:" << item << std::endl; // 3. 通知生产者,继续生产
param_repo._cv_queue_not_full.notify_one(); return item;
}
  • 1.5 完整源码
#pragma once

#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <queue>
#include <vector> std::mutex _mtx;
std::condition_variable _cv_not_full;
std::condition_variable _cv_not_empty; const int max_queue_size_10 = 10; template<typename T>
struct repo_
{
// 用作互斥访问缓冲区
std::mutex _mtx_queue; // 缓冲区最大size
unsigned int _count_max_queue_10 = 10; // 缓冲区
std::queue<T> _queue; // 缓冲区没有满,通知生产者继续生产
std::condition_variable _cv_queue_not_full; // 缓冲区不为空,通知消费者继续消费
std::condition_variable _cv_queue_not_empty; repo_(const unsigned int count_max_queue = 10) :_count_max_queue_10(count_max_queue) {}
}; template <typename T>
using repo = repo_<T>; //---------------------------------------------------------------------------------------- // 生产者生产数据
template <typename T>
void thread_produce_item(const int &thread_index, repo<T>& param_repo, const T& repo_item)
{
std::unique_lock<std::mutex> lock(param_repo._mtx_queue); // 1. 生产者只要发现缓冲区没有满, 就继续生产
param_repo._cv_queue_not_full.wait(lock, [&] { return param_repo._queue.size() < param_repo._count_max_queue_10; }); // 2. 将生产好的商品放入缓冲区
param_repo._queue.push(repo_item); // log to console
std::cout << "生产者" << thread_index << "生产数据:" << repo_item << "\n"; // 3. 通知消费者可以消费了
param_repo._cv_queue_not_empty.notify_one();
} //----------------------------------------------------------------------------------------
// 消费者消费数据 template <typename T>
T thread_consume_item(const int thread_index, repo<T>& param_repo)
{
std::unique_lock<std::mutex> lock(param_repo._mtx_queue); // 1. 消费者需要等待【缓冲区不为空】的信号
param_repo._cv_queue_not_empty.wait(lock, [&] {return !param_repo._queue.empty(); }); // 2. 拿出数据
T item;
item = param_repo._queue.front();
param_repo._queue.pop(); std::cout << "消费者" << thread_index << "从缓冲区中拿出一组数据:" << item << std::endl; // 3. 通知生产者,继续生产
param_repo._cv_queue_not_full.notify_one(); return item;
} //---------------------------------------------------------------------------------------- /**
* @ brief: 生产者线程
* @ thread_index - 线程标识,区分是哪一个线程
* @ count_max_produce - 最大生产次数
* @ param_repo - 缓冲区
* @ return - void */
template< typename T >
void thread_pro(const int thread_index, const int count_max_produce, repo<T>* param_repo)
{
for (int item = 0; item < count_max_produce; ++item)
{
thread_produce_item<T>(thread_index, *param_repo, item); std::this_thread::sleep_for(std::chrono::microseconds(16));
}
} /**
* @ brief: 消费者线程
* @ thread_index - 线程标识,区分线程
* @ param_repo - 缓冲区
* @ return - void */
template< typename T >
void thread_con(const int thread_index, repo<T>* param_repo)
{
while (true)
{
T item;
item = thread_consume_item<T>(thread_index, *param_repo);
std::this_thread::sleep_for(std::chrono::microseconds(16)); if ((param_repo->_count_max_queue_10 - 1) == item)
break;
}
} // 入口函数
//---------------------------------------------------------------------------------------- int main(int argc, char *argv[], char *env[])
{
// 缓冲区
repo<int> repository;
// 线程池
std::vector<std::thread> vec_thread; // 生产者
vec_thread.push_back(std::thread(thread_pro<int>, 1, 10, &repository)); // 消费者
vec_thread.push_back(std::thread(thread_con<int>, 1, &repository)); for (auto &item : vec_thread)
{
item.join();
} return 0;
}
  • 1.6 可能输出结果

再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现)的更多相关文章

  1. 再谈多线程模型之生产者消费者(多生产者和单一消费者 )(c++11实现)

    0.关于 为缩短篇幅,本系列记录如下: 再谈多线程模型之生产者消费者(基础概念)(c++11实现) 再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现) 再谈多线程模型之生产者消费 ...

  2. 再谈多线程模型之生产者消费者(单一生产者和多消费者 )(c++11实现)

    0.关于 为缩短篇幅,本系列记录如下: 再谈多线程模型之生产者消费者(基础概念)(c++11实现) 再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现) 再谈多线程模型之生产者消费 ...

  3. 再谈多线程模型之生产者消费者(总结)(c++11实现)

    0.关于 为缩短篇幅,本系列记录如下: 再谈多线程模型之生产者消费者(基础概念)(c++11实现) 再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现) 再谈多线程模型之生产者消费 ...

  4. 再谈多线程模型之生产者消费者(多生产者和多消费者 )(c++11实现)

    0.关于 为缩短篇幅,本系列记录如下: 再谈多线程模型之生产者消费者(基础概念)(c++11实现) 再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现) 再谈多线程模型之生产者消费 ...

  5. 再谈多线程模型之生产者消费者(基础概念)(c++11实现)

    0.关于 为缩短篇幅,本系列记录如下: 再谈多线程模型之生产者消费者(基础概念)(c++11实现)[本文] 再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现) 再谈多线程模型之生 ...

  6. Java 多线程基础(十二)生产者与消费者

    Java 多线程基础(十二)生产者与消费者 一.生产者与消费者模型 生产者与消费者问题是个非常典型的多线程问题,涉及到的对象包括“生产者”.“消费者”.“仓库”和“产品”.他们之间的关系如下: ①.生 ...

  7. Java 多线程详解(四)------生产者和消费者

    Java 多线程详解(一)------概念的引入:http://www.cnblogs.com/ysocean/p/6882988.html Java 多线程详解(二)------如何创建进程和线程: ...

  8. [Java基础] java多线程关于消费者和生产者

    多线程: 生产与消费 1.生产者Producer生产produce产品,并将产品放到库存inventory里:同时消费者Consumer从库存inventory里消费consume产品. 2.库存in ...

  9. Java多线程-同步:synchronized 和线程通信:生产者消费者模式

    大家伙周末愉快,小乐又来给大家献上技术大餐.上次是说到了Java多线程的创建和状态|乐字节,接下来,我们再来接着说Java多线程-同步:synchronized 和线程通信:生产者消费者模式. 一.同 ...

随机推荐

  1. SNP 过滤(二)

    本文转载于https://www.jianshu.com/p/e6d5dd774c6e SNP位点过滤 SNP过滤有两种情况,一种是仅根据位点质量信息(测序深度,回帖质量等)对SNP进行粗过滤.如果使 ...

  2. 蛋白组DIA分析:Spectronaut软件使用指南

    官方文档: https://biognosys.com/media.ashx/spectronautmanual.pdf 0. 准备 Spectronaut软件是蛋白组DIA分析最常用的谱图解析软件之 ...

  3. Python中类的相关介绍

    本文主要介绍python中类的概念性内容,如类的定义.说明及简单使用 1. 类的简单介绍 1 # -*- coding:utf-8 -*- 2 # Author:Wong Du 3 4 ''' 5 - ...

  4. 简单mvc框架核心笔记

    简单mvc框架核心笔记 看了thinkphp5的源码,模仿写了一个简单的框架,有一些心得笔记,记录一下 1.目录结构 比较简单,没有tp那么复杂,只是把需要的核心类写了一些. 核心类库放在mykj里, ...

  5. mongodb数据库简单类

    <?php/*** Mongodb类** examples: * $mongo = new HMongodb("127.0.0.1:11223"); * $mongo-> ...

  6. PowerToys插件扩展(类似Alfred)

    在mac系统除了自带的Spotlight还有一个很好用的工具叫Alfred image 在windows系统也有一个很好用的工具叫PowerToys,是微软的一个开源项目 image https:// ...

  7. SM 国密算法踩坑指南

    各位,好久不见~ 最近接手网联的国密改造项目,由于对国密算法比较陌生,前期碰到了一系列国密算法加解密的问题. 所以这次总结一下,分享这个过程遇到的问题,希望帮到大家. 国密 什么是国密算法? 国密就是 ...

  8. 什么是 IP 地址 – 定义和解释

    IP 地址定义 IP 地址是一个唯一地址,用于标识互联网或本地网络上的设备.IP 代表"互联网协议",它是控制通过互联网或本地网络发送的数据格式的一组规则. 本质上,IP 地址是允 ...

  9. OS开发之Objective-C与JavaScript的交互

    UIWebView是iOS最常用的SDK之一,它有一个stringByEvaluatingJavaScriptFromString方法可以将javascript嵌入页面中,通过这个方法我们可以在iOS ...

  10. Spring中的InitializingBean与DisposableBean

    InitializingBean顾名思义,应该是初始化Bean相关的接口. 先看一下该接口都定义了哪些方法: public interface InitializingBean { void afte ...