0.关于

为缩短篇幅,本系列记录如下:

再谈多线程模型之生产者消费者(基础概念)(c++11实现)

再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现)本文

再谈多线程模型之生产者消费者(单一生产者和多消费者)(c++11实现)

再谈多线程模型之生产者消费者(多生产者和单一消费者 )(c++11实现)

再谈多线程模型之生产者消费者(多生产者和多消费者 )(c++11实现)

再谈多线程模型之生产者消费者(总结)(c++11实现)

本文涉及到的代码演示环境: VS2017

欢迎留言指正

1.单一生产者 & 单一消费者

  • 1.1 因为只有单一的生产者和消费者,所以,同步的也只有他们俩,互斥仅仅存在消费者和生产者之间,生产者(消费者)之间不存在互斥?一个对象怎么谈互斥?自己与自己互斥? 显然,这是一个假命题。所以,这个模型中,互斥存在生产者与消费者。
  • 1.2 一个结构帮你了解,
struct repo_
{
// 用作互斥访问缓冲区
std::mutex _mtx_queue; // 缓冲区最大size
unsigned int _count_max_queue_10 = 10; // 缓冲区
std::queue<int> _queue; // 缓冲区没有满,通知生产者继续生产
std::condition_variable _cv_queue_not_full; // 缓冲区不为空,通知消费者继续消费
std::condition_variable _cv_queue_not_empty; repo_(const unsigned int count_max_queue = 10) :_count_max_queue_10(count_max_queue) {}
};
  • 1.3 生产者流程: 1.等待缓冲区没有满信号,2.生产数据放入缓冲区,3.通知消费者可以取数据。
template <typename T>
void thread_produce_item(const int &thread_index, repo<T>& param_repo, const T& repo_item)
{
std::unique_lock<std::mutex> lock(param_repo._mtx_queue); // 1. 生产者只要发现缓冲区没有满, 就继续生产
param_repo._cv_queue_not_full.wait(lock, [&] { return param_repo._queue.size() < param_repo._count_max_queue_10; }); // 2. 将生产好的商品放入缓冲区
param_repo._queue.push(repo_item); // log to console
std::cout << "生产者" << thread_index << "生产数据:" << repo_item << "\n"; // 3. 通知消费者可以消费了
param_repo._cv_queue_not_empty.notify_one();
}
  • 1.4 消费者流程: 1.等待缓冲区不为空信号,2.从缓冲区中消费数据,3.通知生产者继续生产数据。
template <typename T>
T thread_consume_item(const int thread_index, repo<T>& param_repo)
{
std::unique_lock<std::mutex> lock(param_repo._mtx_queue); // 1. 消费者需要等待【缓冲区不为空】的信号
param_repo._cv_queue_not_empty.wait(lock, [&] {return !param_repo._queue.empty(); }); // 2. 拿出数据
T item;
item = param_repo._queue.front();
param_repo._queue.pop(); std::cout << "消费者" << thread_index << "从缓冲区中拿出一组数据:" << item << std::endl; // 3. 通知生产者,继续生产
param_repo._cv_queue_not_full.notify_one(); return item;
}
  • 1.5 完整源码
#pragma once

#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <queue>
#include <vector> std::mutex _mtx;
std::condition_variable _cv_not_full;
std::condition_variable _cv_not_empty; const int max_queue_size_10 = 10; template<typename T>
struct repo_
{
// 用作互斥访问缓冲区
std::mutex _mtx_queue; // 缓冲区最大size
unsigned int _count_max_queue_10 = 10; // 缓冲区
std::queue<T> _queue; // 缓冲区没有满,通知生产者继续生产
std::condition_variable _cv_queue_not_full; // 缓冲区不为空,通知消费者继续消费
std::condition_variable _cv_queue_not_empty; repo_(const unsigned int count_max_queue = 10) :_count_max_queue_10(count_max_queue) {}
}; template <typename T>
using repo = repo_<T>; //---------------------------------------------------------------------------------------- // 生产者生产数据
template <typename T>
void thread_produce_item(const int &thread_index, repo<T>& param_repo, const T& repo_item)
{
std::unique_lock<std::mutex> lock(param_repo._mtx_queue); // 1. 生产者只要发现缓冲区没有满, 就继续生产
param_repo._cv_queue_not_full.wait(lock, [&] { return param_repo._queue.size() < param_repo._count_max_queue_10; }); // 2. 将生产好的商品放入缓冲区
param_repo._queue.push(repo_item); // log to console
std::cout << "生产者" << thread_index << "生产数据:" << repo_item << "\n"; // 3. 通知消费者可以消费了
param_repo._cv_queue_not_empty.notify_one();
} //----------------------------------------------------------------------------------------
// 消费者消费数据 template <typename T>
T thread_consume_item(const int thread_index, repo<T>& param_repo)
{
std::unique_lock<std::mutex> lock(param_repo._mtx_queue); // 1. 消费者需要等待【缓冲区不为空】的信号
param_repo._cv_queue_not_empty.wait(lock, [&] {return !param_repo._queue.empty(); }); // 2. 拿出数据
T item;
item = param_repo._queue.front();
param_repo._queue.pop(); std::cout << "消费者" << thread_index << "从缓冲区中拿出一组数据:" << item << std::endl; // 3. 通知生产者,继续生产
param_repo._cv_queue_not_full.notify_one(); return item;
} //---------------------------------------------------------------------------------------- /**
* @ brief: 生产者线程
* @ thread_index - 线程标识,区分是哪一个线程
* @ count_max_produce - 最大生产次数
* @ param_repo - 缓冲区
* @ return - void */
template< typename T >
void thread_pro(const int thread_index, const int count_max_produce, repo<T>* param_repo)
{
for (int item = 0; item < count_max_produce; ++item)
{
thread_produce_item<T>(thread_index, *param_repo, item); std::this_thread::sleep_for(std::chrono::microseconds(16));
}
} /**
* @ brief: 消费者线程
* @ thread_index - 线程标识,区分线程
* @ param_repo - 缓冲区
* @ return - void */
template< typename T >
void thread_con(const int thread_index, repo<T>* param_repo)
{
while (true)
{
T item;
item = thread_consume_item<T>(thread_index, *param_repo);
std::this_thread::sleep_for(std::chrono::microseconds(16)); if ((param_repo->_count_max_queue_10 - 1) == item)
break;
}
} // 入口函数
//---------------------------------------------------------------------------------------- int main(int argc, char *argv[], char *env[])
{
// 缓冲区
repo<int> repository;
// 线程池
std::vector<std::thread> vec_thread; // 生产者
vec_thread.push_back(std::thread(thread_pro<int>, 1, 10, &repository)); // 消费者
vec_thread.push_back(std::thread(thread_con<int>, 1, &repository)); for (auto &item : vec_thread)
{
item.join();
} return 0;
}
  • 1.6 可能输出结果

再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现)的更多相关文章

  1. 再谈多线程模型之生产者消费者(多生产者和单一消费者 )(c++11实现)

    0.关于 为缩短篇幅,本系列记录如下: 再谈多线程模型之生产者消费者(基础概念)(c++11实现) 再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现) 再谈多线程模型之生产者消费 ...

  2. 再谈多线程模型之生产者消费者(单一生产者和多消费者 )(c++11实现)

    0.关于 为缩短篇幅,本系列记录如下: 再谈多线程模型之生产者消费者(基础概念)(c++11实现) 再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现) 再谈多线程模型之生产者消费 ...

  3. 再谈多线程模型之生产者消费者(总结)(c++11实现)

    0.关于 为缩短篇幅,本系列记录如下: 再谈多线程模型之生产者消费者(基础概念)(c++11实现) 再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现) 再谈多线程模型之生产者消费 ...

  4. 再谈多线程模型之生产者消费者(多生产者和多消费者 )(c++11实现)

    0.关于 为缩短篇幅,本系列记录如下: 再谈多线程模型之生产者消费者(基础概念)(c++11实现) 再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现) 再谈多线程模型之生产者消费 ...

  5. 再谈多线程模型之生产者消费者(基础概念)(c++11实现)

    0.关于 为缩短篇幅,本系列记录如下: 再谈多线程模型之生产者消费者(基础概念)(c++11实现)[本文] 再谈多线程模型之生产者消费者(单一生产者和单一消费者)(c++11实现) 再谈多线程模型之生 ...

  6. Java 多线程基础(十二)生产者与消费者

    Java 多线程基础(十二)生产者与消费者 一.生产者与消费者模型 生产者与消费者问题是个非常典型的多线程问题,涉及到的对象包括“生产者”.“消费者”.“仓库”和“产品”.他们之间的关系如下: ①.生 ...

  7. Java 多线程详解(四)------生产者和消费者

    Java 多线程详解(一)------概念的引入:http://www.cnblogs.com/ysocean/p/6882988.html Java 多线程详解(二)------如何创建进程和线程: ...

  8. [Java基础] java多线程关于消费者和生产者

    多线程: 生产与消费 1.生产者Producer生产produce产品,并将产品放到库存inventory里:同时消费者Consumer从库存inventory里消费consume产品. 2.库存in ...

  9. Java多线程-同步:synchronized 和线程通信:生产者消费者模式

    大家伙周末愉快,小乐又来给大家献上技术大餐.上次是说到了Java多线程的创建和状态|乐字节,接下来,我们再来接着说Java多线程-同步:synchronized 和线程通信:生产者消费者模式. 一.同 ...

随机推荐

  1. 【豆科基因组】豇豆Cowpea,Vigna unguiculata [L.] Walp.基因组2019PJ

    目录 来源 结果 基因组大小估计 采用stitching方法组装 修改豇豆染色体编号 基因注释和重复DNA 豇豆遗传多样性 SNP和INDEL Vu03 上 4.2-Mb 染色体倒位的鉴定 与其他暖季 ...

  2. 【机器学习与R语言】8- 神经网络

    目录 1.理解神经网络 1)基本概念 2)激活函数 3)网络拓扑 4)训练算法 2.神经网络应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高性能 1.理解神经网络 1) ...

  3. 表格合并单元格【c#】

    gridBranchInfo.DataSource = dtBranchViewList; gridBranchInfo.DataBind(); Random random = new Random( ...

  4. 学习java的第二十一天

    一.今日收获 1.java完全学习手册第三章算法的3.2排序,比较了跟c语言排序上的不同 2.观看哔哩哔哩上的教学视频 二.今日问题 1.快速排序法的运行调试多次 2.哔哩哔哩教学视频的一些术语不太理 ...

  5. A Child's History of England.48

    A few could not resolve to do this, but the greater part complied. They made a blazing heap of all t ...

  6. 《Scala编程》课程作业

    第一题.百元喝酒 作业要求:每瓶啤酒2元,3个空酒瓶或者5个瓶盖可换1瓶啤酒.100元最多可喝多少瓶啤酒?(不允许借啤酒) 思路:利用递归算法,一次性买完,然后递归算出瓶盖和空瓶能换的啤酒数 /** ...

  7. 零基础学习java------day17------缓冲字节流,转换字节流,简化流,缓冲字符流,序列化和对象流

    1. 缓冲字节流 缓冲区:缓冲区实质上是一个数组.通常它是一个字节数组,但是也可以使用其他种类的数组.但是一个缓冲区不 仅仅 是一个数组.缓冲区提供了对数据的结构化访问,而且还可以跟踪系统的读/写进程 ...

  8. 分类模型性能的评判方法-ROC分析

    一.混淆矩阵 二.引入ROC曲线 如上第一幅图,蓝色高斯表示真实值为阴性,红色高斯表示真实值为阳性.A,B,C代表不同的阈值,阈值线左边表示预测值为阴性,阈值线右边表示预测值为阳性.阈值从A到C,由此 ...

  9. Vue相关,vue.nextTick

    vue中有一个较为特殊的API,nextTick.根据官方文档的解释,它可以在DOM更新完毕之后执行一个回调,用法如下: // 修改数据 vm.msg = 'Hello' // DOM 还没有更新 V ...

  10. EasyExcel读写Excel

    使用过 poi 的开发同学可能都有此体会,每次都要写一坨代码,最后的代码如下面一样: 这样的代码是不是又臭又长?当字段数量多的时候,一不小心还容易写错.阿粉还记得当初使用 poi 导出一个二十多字段的 ...