由于$\mu(i)$,因此每一个素数最多存在1次,当$k=0$答案必然为0

根据莫比乌斯和欧拉函数的积性,答案与对素数的划分无关,仅与每一个素数是否出现有关,换言之枚举素数出现的集合$P'$,答案即为$\sum_{P'\subseteq P}(-1)^{|P'|}div(|P'|)\prod_{p\in P'}(p-1)$

(其中$div(n)$表示对$n$个数划分的方案数,当$k=1$时即$div(n)=1$)

令$f(x)=\sum_{i=0}^{\infty}(\sum_{|P'|=i}\prod_{p\in P'}(p-1))x^{i}$,答案即为$\sum_{i=0}^{\infty}(-1)^{i}div(i)f(x)[i]$

考虑求$f(x)$,当插入一个素数$p$,则$f(x)[i]=(p-1)f(x)[i-1]+f(x)[i]$,可以看作乘上$1+(p-1)x$这个多项式,重复此过程可得$f(x)=\prod_{p+1\in P}(1+px)$,分治fft即可

当$p=1$时$div(i)=1$,直接计算即可;当$p=2$时,考虑$div(i)$,即贝尔数,记作$B_{n}$

考虑其指数生成函数,即$f(x)=\sum_{i=0}^{\infty}\frac{B_{i}}{i!}x^{i}$

代入其递推式,即$f(x)=B_{0}+\sum_{i=1}^{\infty}\frac{\sum_{j=0}^{i-1}\frac{(i-1)!}{j!(i-j-1)!}B_{j}}{i!}x^{i}$

调换枚举顺序,即$f(x)=B_{0}+\sum_{j=0}^{\infty}\frac{B_{j}}{j!}\sum_{i=j+1}^{\infty}\frac{x^{i}}{i(i-j-1)!}$

对其求导,即$f'(x)=\sum_{j=0}^{\infty}\frac{B_{j}}{j!}\sum_{i=j}^{\infty}\frac{x^{i}}{(i-j)!}=\sum_{j=0}^{\infty}\frac{B_{j}x^{j}}{j!}\sum_{i=j}^{\infty}\frac{x^{i-j}}{(i-j)!}$

根据$e^{x}$泰勒展开的结果,后半部分即$e^{x}$,代入得$f'(x)=e^{x}\sum_{j=0}^{\infty}\frac{B_{j}x^{j}}{j!}=e^{x}f(x)$

考虑多项式$\frac{f'(x)}{f(x)}$,联系多项式ln的推导过程或对$\ln f(x)$求导,可得$\frac{f'(x)}{f(x)}=(\ln f(x))'=e^{x}$

对两边积分,即$\ln f(x)=e^{x}+C$,再同时exp,即$f(x)=e^{e^{x}+C}$,由于exp要求常数项为0,令$C=-1$即可,最终得到$f(x)=e^{e^{x}}-1$,多项式exp即可

由于素数个数为$\frac{n}{\ln n}$个,因此总复杂度为$o(n\log_{2}n)$,可以通过

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1000005
4 #define mod 998244353
5 struct poly{
6 vector<int>a;
7 }a,b;
8 int n,type,ans,p[N],vis[N];
9 int ksm(int n,int m){
10 if (!m)return 1;
11 int s=ksm(n,m>>1);
12 s=1LL*s*s%mod;
13 if (m&1)s=1LL*s*n%mod;
14 return s;
15 }
16 void ntt(poly &a,int n,int p){
17 for(int i=0;i<(1<<n);i++){
18 int rev=0;
19 for(int j=0;j<n;j++)rev=rev*2+((i&(1<<j))>0);
20 if (i<rev)swap(a.a[i],a.a[rev]);
21 }
22 for(int i=2;i<=(1<<n);i*=2){
23 int s=ksm(3,(mod-1)/i);
24 if (p)s=ksm(s,mod-2);
25 for(int j=0;j<(1<<n);j+=i)
26 for(int k=0,ss=1;k<(i>>1);k++,ss=1LL*ss*s%mod){
27 int x=a.a[j+k],y=1LL*ss*a.a[j+k+(i>>1)]%mod;
28 a.a[j+k]=(x+y)%mod;
29 a.a[j+k+(i>>1)]=(x+mod-y)%mod;
30 }
31 }
32 if (p){
33 int s=ksm((1<<n),mod-2);
34 for(int i=0;i<(1<<n);i++)a.a[i]=1LL*a.a[i]*s%mod;
35 }
36 }
37 poly dfs(int n,int l,int r){
38 poly ans;
39 if (n==1){
40 ans.a.push_back(1);
41 if ((!l)||(r>p[0]))ans.a.push_back(0);
42 else ans.a.push_back(p[l]-1);
43 ans.a.push_back(0);
44 ans.a.push_back(0);
45 return ans;
46 }
47 int mid=(l+r>>1);
48 poly L=dfs(n-1,l,mid),R=dfs(n-1,mid+1,r);
49 for(int i=0;i<(1<<n);i++)L.a.push_back(0);
50 for(int i=0;i<(1<<n);i++)R.a.push_back(0);
51 ntt(L,n+1,0);
52 ntt(R,n+1,0);
53 for(int i=0;i<(1<<n+1);i++)ans.a.push_back(1LL*L.a[i]*R.a[i]%mod);
54 ntt(ans,n+1,1);
55 return ans;
56 }
57 poly inv(int n,poly a){//返回为2^(n+1)次多项式
58 poly ans;
59 if (n==0){
60 ans.a.push_back(ksm(a.a[0],mod-2));
61 ans.a.push_back(0);
62 return ans;
63 }
64 ans=inv(n-1,a);
65 for(int i=0;i<(1<<n);i++)ans.a.push_back(0);
66 poly b=a;
67 for(int i=(1<<n);i<(1<<n+1);i++)b.a[i]=0;
68 ntt(ans,n+1,0);
69 ntt(b,n+1,0);
70 for(int i=0;i<(1<<n+1);i++)ans.a[i]=1LL*ans.a[i]*(mod+2-1LL*ans.a[i]*b.a[i]%mod)%mod;
71 ntt(ans,n+1,1);
72 for(int i=(1<<n);i<(1<<n+1);i++)ans.a[i]=0;
73 return ans;
74 }
75 poly ln(int n,poly a){//返回为2^(n+1)次多项式
76 poly ans=inv(n,a);
77 for(int i=0;i<(1<<n+1)-1;i++)a.a[i]=1LL*a.a[i+1]*(i+1)%mod;
78 a.a[(1<<n+1)-1]=0;
79 ntt(ans,n+1,0);
80 ntt(a,n+1,0);
81 for(int i=0;i<(1<<n+1);i++)ans.a[i]=1LL*ans.a[i]*a.a[i]%mod;
82 ntt(ans,n+1,1);
83 for(int i=(1<<n+1)-1;i;i--)ans.a[i]=1LL*ksm(i,mod-2)*ans.a[i-1]%mod;
84 ans.a[0]=0;
85 for(int i=(1<<n);i<(1<<n+1);i++)ans.a[i]=0;
86 return ans;
87 }
88 poly exp(int n,poly a){//返回为2^(n+1)次多项式
89 poly ans;
90 if (!n){
91 ans.a.push_back(1);
92 ans.a.push_back(0);
93 return ans;
94 }
95 ans=exp(n-1,a);
96 for(int i=0;i<(1<<n);i++)ans.a.push_back(0);
97 poly l=ln(n,ans);
98 for(int i=0;i<(1<<n);i++)l.a[i]=(a.a[i]-l.a[i]+mod)%mod;
99 for(int i=(1<<n);i<(1<<n+1);i++)l.a[i]=0;
100 l.a[0]++;
101 ntt(l,n+1,0);
102 ntt(ans,n+1,0);
103 for(int i=0;i<(1<<n+1);i++)ans.a[i]=1LL*ans.a[i]*l.a[i]%mod;
104 ntt(ans,n+1,1);
105 for(int i=(1<<n);i<(1<<n+1);i++)ans.a[i]=0;
106 return ans;
107 }
108 int main(){
109 scanf("%d%d",&n,&type);
110 if (!type){
111 printf("0");
112 return 0;
113 }
114 for(int i=2;i<=n;i++){
115 if (!vis[i]){
116 p[++p[0]]=i;
117 vis[i]=1;
118 }
119 for(int j=1;(j<=p[0])&&(i*p[j]<=n);j++){
120 vis[i*p[j]]=1;
121 if (i%p[j]==0)break;
122 }
123 }
124 a=dfs(18,0,(1<<17)-1);
125 if (type==1){
126 for(int i=1;i<=p[0];i++)
127 if (i&1)ans=(ans+mod-a.a[i])%mod;
128 else ans=(ans+a.a[i])%mod;
129 printf("%d",ans);
130 return 0;
131 }
132 b.a.push_back(0);
133 b.a.push_back(1);
134 for(int i=2;i<(1<<17);i++)b.a.push_back(1LL*b.a[i-1]*ksm(i,mod-2)%mod);
135 b=exp(17,b);
136 int fac=1;
137 for(int i=1;i<=p[0];i++){
138 fac=1LL*fac*i%mod;
139 int s=1LL*a.a[i]*b.a[i]%mod*fac%mod;
140 if (i&1)ans=(ans+mod-s)%mod;
141 else ans=(ans+s)%mod;
142 }
143 printf("%d",ans);
144 }

[luogu7092]计数题的更多相关文章

  1. ZOJ 3955 Saddle Point 校赛 一道计数题

    ZOJ3955 题意是这样的 给定一个n*m的整数矩阵 n和m均小于1000 对这个矩阵删去任意行和列后剩余一个矩阵为M{x1,x2,,,,xm;y1,y2,,,,,yn}表示删除任意的M行N列 对于 ...

  2. UOJ#428. 【集训队作业2018】普通的计数题

    #428. [集训队作业2018]普通的计数题 模型转化好题 所以变成统计有标号合法的树的个数. 合法限制: 1.根标号比子树都大 2.如果儿子全是叶子,数量B中有 3.如果存在一个儿子不是叶子,数量 ...

  3. D. Count the Arrays 计数题

    D. Count the Arrays 也是一个计数题. 题目大意: 要求构造一个满足题意的数列. \(n\) 代表数列的长度 数列元素的范围 \([1,m]\) 数列必须有且仅有一对相同的数 存在一 ...

  4. 【NOIP2017提高A组模拟9.7】JZOJ 计数题

    [NOIP2017提高A组模拟9.7]JZOJ 计数题 题目 Description Input Output Sample Input 5 2 2 3 4 5 Sample Output 8 6 D ...

  5. noip模拟44[我想我以后会碰见计数题就溜走的]

    noip模拟44 solutions 这一场抱零的也忒多了,我也只有45pts 据说好像是把几套题里面最难的收拾出来让我们考得 好惨烈啊,这次的考试我只有第一题骗了40pts,其他都抱零了 T1 Em ...

  6. FJOI2020 的两道组合计数题

    最近细品了 FJOI2020 的两道计数题,感觉抛开数据范围不清还卡常不谈里面的组合计数技巧还是挺不错的.由于这两道题都基于卡特兰数的拓展,所以我们把它们一并研究掉. 首先是 D1T3 ,先给出简要题 ...

  7. 「10.16晚」序列(....)·购物(性质)·计数题(DP)

    A. 序列 考场不认真读题会死..... 读清题就很简单了,分成若干块,然后块内递增,块外递减,同时使最大的块长为$A$ B. 购物 考场思路太局限了,没有发现性质, 考虑将$a_{i}$,排序前缀和 ...

  8. hdu-6415 Rikka with Nash Equilibrium dp计数题

    http://acm.hdu.edu.cn/showproblem.php?pid=6415 题意:将1~n*m填入一个n*m矩阵 问只有一个顶点的构造方案. 顶点的定义是:某数同时是本行本列的最大值 ...

  9. 【uoj428】普通的计数题

    Portal --> uoj428 Solution 不会胖子的一个log正解qwq只能怂怂滴写分治了qwq ​ 首先就是一个我想不到的转化qwq ​ 我们将第\(i\)次操作加入的数看成一个编 ...

随机推荐

  1. Java语言程序设计与数据结构(基础篇)第七章答案

    答案为本人求解,如有错误,还望海涵.如有雷同,纯属巧合. 7.1 import java.util.Scanner; public class Main { public static void ma ...

  2. Java中的基本类型和包装类

    Java中基本数据类型与包装类型有   基本类型     包装器类型   boolean Boolean char Character int Integer byte Byte short Shor ...

  3. C语言中while 语句

    while的执行顺序 while 循环的执行顺序非常简单,它的格式是: while (表达式) { 语句: } 概念:当表达式为真,则执行下面的语句:语句执行完之后再判断表达式是否为真,如果为真,再次 ...

  4. 分布式全局ID与分布式事务

    1. 概述 老话说的好:人不可貌相,海水不可斗量.以貌取人是非常不好的,我们要平等的对待每一个人. 言归正传,今天我们来聊一下分布式全局 ID 与分布式事务. 2. 分布式全局ID 2.1 分布式数据 ...

  5. 4.19——数组双指针——26. 删除有序数组中的重复项 & 27. 删除有序数组中的重复项II & 80. 删除有序数组中的重复项 II

    第一次做到数组双指针的题目是80: 因为python的List是可以用以下代码来删除元素的: del List[index] 所以当时的我直接用了暴力删除第三个重复元素的做法,大概代码如下: n = ...

  6. Stream中的Collector收集器原理

    前言 Stream的基本操作因为平时工作中用得非常多(也能看到一些同事把Stream操作写得很丑陋),所以基本用法就不写文章记录了. 之所以能把Stream的操作写得很丑陋,完全是因为Stream底层 ...

  7. oo第一次博客-三次表达式求导的总结与反思

    一.问题回顾与基本设计思路 三次作业依次是多项式表达式求导,多项式.三角函数混合求导,基于三角函数和多项式的嵌套表达式求导. 第一次作业想法很简单,根据指导书,我们可以发现表达式是由各个项与项之间的运 ...

  8. 算法:杨辉三角(Pascal's Triangle)

    一.杨辉三角介绍 杨辉三角形,又称帕斯卡三角形.贾宪三角形.海亚姆三角形.巴斯卡三角形,是二项式系数的一种写法,形似三角形,在中国首现于南宋杨辉的<详解九章算法>得名,书中杨辉说明是引自贾 ...

  9. ASP.NET Core 学习笔记 第四篇 ASP.NET Core 中的配置

    前言 说道配置文件,基本大多数软件为了扩展性.灵活性都会涉及到配置文件,比如之前常见的app.config和web.config.然后再说.NET Core,很多都发生了变化.总体的来说技术在进步,新 ...

  10. T-SQL——函数——时间操作函数

    目录 0. 日期和时间类型 0.0 时间类型 1. 转换函数 1.1 CAST 1.2 CONVERT 2. 日期操作函数 2.0 GETDATE和GETUTCDATE 2.1 SYSDATETIME ...