[luogu7092]计数题
由于$\mu(i)$,因此每一个素数最多存在1次,当$k=0$答案必然为0
根据莫比乌斯和欧拉函数的积性,答案与对素数的划分无关,仅与每一个素数是否出现有关,换言之枚举素数出现的集合$P'$,答案即为$\sum_{P'\subseteq P}(-1)^{|P'|}div(|P'|)\prod_{p\in P'}(p-1)$
(其中$div(n)$表示对$n$个数划分的方案数,当$k=1$时即$div(n)=1$)
令$f(x)=\sum_{i=0}^{\infty}(\sum_{|P'|=i}\prod_{p\in P'}(p-1))x^{i}$,答案即为$\sum_{i=0}^{\infty}(-1)^{i}div(i)f(x)[i]$
考虑求$f(x)$,当插入一个素数$p$,则$f(x)[i]=(p-1)f(x)[i-1]+f(x)[i]$,可以看作乘上$1+(p-1)x$这个多项式,重复此过程可得$f(x)=\prod_{p+1\in P}(1+px)$,分治fft即可
当$p=1$时$div(i)=1$,直接计算即可;当$p=2$时,考虑$div(i)$,即贝尔数,记作$B_{n}$
考虑其指数生成函数,即$f(x)=\sum_{i=0}^{\infty}\frac{B_{i}}{i!}x^{i}$
代入其递推式,即$f(x)=B_{0}+\sum_{i=1}^{\infty}\frac{\sum_{j=0}^{i-1}\frac{(i-1)!}{j!(i-j-1)!}B_{j}}{i!}x^{i}$
调换枚举顺序,即$f(x)=B_{0}+\sum_{j=0}^{\infty}\frac{B_{j}}{j!}\sum_{i=j+1}^{\infty}\frac{x^{i}}{i(i-j-1)!}$
对其求导,即$f'(x)=\sum_{j=0}^{\infty}\frac{B_{j}}{j!}\sum_{i=j}^{\infty}\frac{x^{i}}{(i-j)!}=\sum_{j=0}^{\infty}\frac{B_{j}x^{j}}{j!}\sum_{i=j}^{\infty}\frac{x^{i-j}}{(i-j)!}$
根据$e^{x}$泰勒展开的结果,后半部分即$e^{x}$,代入得$f'(x)=e^{x}\sum_{j=0}^{\infty}\frac{B_{j}x^{j}}{j!}=e^{x}f(x)$
考虑多项式$\frac{f'(x)}{f(x)}$,联系多项式ln的推导过程或对$\ln f(x)$求导,可得$\frac{f'(x)}{f(x)}=(\ln f(x))'=e^{x}$
对两边积分,即$\ln f(x)=e^{x}+C$,再同时exp,即$f(x)=e^{e^{x}+C}$,由于exp要求常数项为0,令$C=-1$即可,最终得到$f(x)=e^{e^{x}}-1$,多项式exp即可
由于素数个数为$\frac{n}{\ln n}$个,因此总复杂度为$o(n\log_{2}n)$,可以通过
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1000005
4 #define mod 998244353
5 struct poly{
6 vector<int>a;
7 }a,b;
8 int n,type,ans,p[N],vis[N];
9 int ksm(int n,int m){
10 if (!m)return 1;
11 int s=ksm(n,m>>1);
12 s=1LL*s*s%mod;
13 if (m&1)s=1LL*s*n%mod;
14 return s;
15 }
16 void ntt(poly &a,int n,int p){
17 for(int i=0;i<(1<<n);i++){
18 int rev=0;
19 for(int j=0;j<n;j++)rev=rev*2+((i&(1<<j))>0);
20 if (i<rev)swap(a.a[i],a.a[rev]);
21 }
22 for(int i=2;i<=(1<<n);i*=2){
23 int s=ksm(3,(mod-1)/i);
24 if (p)s=ksm(s,mod-2);
25 for(int j=0;j<(1<<n);j+=i)
26 for(int k=0,ss=1;k<(i>>1);k++,ss=1LL*ss*s%mod){
27 int x=a.a[j+k],y=1LL*ss*a.a[j+k+(i>>1)]%mod;
28 a.a[j+k]=(x+y)%mod;
29 a.a[j+k+(i>>1)]=(x+mod-y)%mod;
30 }
31 }
32 if (p){
33 int s=ksm((1<<n),mod-2);
34 for(int i=0;i<(1<<n);i++)a.a[i]=1LL*a.a[i]*s%mod;
35 }
36 }
37 poly dfs(int n,int l,int r){
38 poly ans;
39 if (n==1){
40 ans.a.push_back(1);
41 if ((!l)||(r>p[0]))ans.a.push_back(0);
42 else ans.a.push_back(p[l]-1);
43 ans.a.push_back(0);
44 ans.a.push_back(0);
45 return ans;
46 }
47 int mid=(l+r>>1);
48 poly L=dfs(n-1,l,mid),R=dfs(n-1,mid+1,r);
49 for(int i=0;i<(1<<n);i++)L.a.push_back(0);
50 for(int i=0;i<(1<<n);i++)R.a.push_back(0);
51 ntt(L,n+1,0);
52 ntt(R,n+1,0);
53 for(int i=0;i<(1<<n+1);i++)ans.a.push_back(1LL*L.a[i]*R.a[i]%mod);
54 ntt(ans,n+1,1);
55 return ans;
56 }
57 poly inv(int n,poly a){//返回为2^(n+1)次多项式
58 poly ans;
59 if (n==0){
60 ans.a.push_back(ksm(a.a[0],mod-2));
61 ans.a.push_back(0);
62 return ans;
63 }
64 ans=inv(n-1,a);
65 for(int i=0;i<(1<<n);i++)ans.a.push_back(0);
66 poly b=a;
67 for(int i=(1<<n);i<(1<<n+1);i++)b.a[i]=0;
68 ntt(ans,n+1,0);
69 ntt(b,n+1,0);
70 for(int i=0;i<(1<<n+1);i++)ans.a[i]=1LL*ans.a[i]*(mod+2-1LL*ans.a[i]*b.a[i]%mod)%mod;
71 ntt(ans,n+1,1);
72 for(int i=(1<<n);i<(1<<n+1);i++)ans.a[i]=0;
73 return ans;
74 }
75 poly ln(int n,poly a){//返回为2^(n+1)次多项式
76 poly ans=inv(n,a);
77 for(int i=0;i<(1<<n+1)-1;i++)a.a[i]=1LL*a.a[i+1]*(i+1)%mod;
78 a.a[(1<<n+1)-1]=0;
79 ntt(ans,n+1,0);
80 ntt(a,n+1,0);
81 for(int i=0;i<(1<<n+1);i++)ans.a[i]=1LL*ans.a[i]*a.a[i]%mod;
82 ntt(ans,n+1,1);
83 for(int i=(1<<n+1)-1;i;i--)ans.a[i]=1LL*ksm(i,mod-2)*ans.a[i-1]%mod;
84 ans.a[0]=0;
85 for(int i=(1<<n);i<(1<<n+1);i++)ans.a[i]=0;
86 return ans;
87 }
88 poly exp(int n,poly a){//返回为2^(n+1)次多项式
89 poly ans;
90 if (!n){
91 ans.a.push_back(1);
92 ans.a.push_back(0);
93 return ans;
94 }
95 ans=exp(n-1,a);
96 for(int i=0;i<(1<<n);i++)ans.a.push_back(0);
97 poly l=ln(n,ans);
98 for(int i=0;i<(1<<n);i++)l.a[i]=(a.a[i]-l.a[i]+mod)%mod;
99 for(int i=(1<<n);i<(1<<n+1);i++)l.a[i]=0;
100 l.a[0]++;
101 ntt(l,n+1,0);
102 ntt(ans,n+1,0);
103 for(int i=0;i<(1<<n+1);i++)ans.a[i]=1LL*ans.a[i]*l.a[i]%mod;
104 ntt(ans,n+1,1);
105 for(int i=(1<<n);i<(1<<n+1);i++)ans.a[i]=0;
106 return ans;
107 }
108 int main(){
109 scanf("%d%d",&n,&type);
110 if (!type){
111 printf("0");
112 return 0;
113 }
114 for(int i=2;i<=n;i++){
115 if (!vis[i]){
116 p[++p[0]]=i;
117 vis[i]=1;
118 }
119 for(int j=1;(j<=p[0])&&(i*p[j]<=n);j++){
120 vis[i*p[j]]=1;
121 if (i%p[j]==0)break;
122 }
123 }
124 a=dfs(18,0,(1<<17)-1);
125 if (type==1){
126 for(int i=1;i<=p[0];i++)
127 if (i&1)ans=(ans+mod-a.a[i])%mod;
128 else ans=(ans+a.a[i])%mod;
129 printf("%d",ans);
130 return 0;
131 }
132 b.a.push_back(0);
133 b.a.push_back(1);
134 for(int i=2;i<(1<<17);i++)b.a.push_back(1LL*b.a[i-1]*ksm(i,mod-2)%mod);
135 b=exp(17,b);
136 int fac=1;
137 for(int i=1;i<=p[0];i++){
138 fac=1LL*fac*i%mod;
139 int s=1LL*a.a[i]*b.a[i]%mod*fac%mod;
140 if (i&1)ans=(ans+mod-s)%mod;
141 else ans=(ans+s)%mod;
142 }
143 printf("%d",ans);
144 }
[luogu7092]计数题的更多相关文章
- ZOJ 3955 Saddle Point 校赛 一道计数题
ZOJ3955 题意是这样的 给定一个n*m的整数矩阵 n和m均小于1000 对这个矩阵删去任意行和列后剩余一个矩阵为M{x1,x2,,,,xm;y1,y2,,,,,yn}表示删除任意的M行N列 对于 ...
- UOJ#428. 【集训队作业2018】普通的计数题
#428. [集训队作业2018]普通的计数题 模型转化好题 所以变成统计有标号合法的树的个数. 合法限制: 1.根标号比子树都大 2.如果儿子全是叶子,数量B中有 3.如果存在一个儿子不是叶子,数量 ...
- D. Count the Arrays 计数题
D. Count the Arrays 也是一个计数题. 题目大意: 要求构造一个满足题意的数列. \(n\) 代表数列的长度 数列元素的范围 \([1,m]\) 数列必须有且仅有一对相同的数 存在一 ...
- 【NOIP2017提高A组模拟9.7】JZOJ 计数题
[NOIP2017提高A组模拟9.7]JZOJ 计数题 题目 Description Input Output Sample Input 5 2 2 3 4 5 Sample Output 8 6 D ...
- noip模拟44[我想我以后会碰见计数题就溜走的]
noip模拟44 solutions 这一场抱零的也忒多了,我也只有45pts 据说好像是把几套题里面最难的收拾出来让我们考得 好惨烈啊,这次的考试我只有第一题骗了40pts,其他都抱零了 T1 Em ...
- FJOI2020 的两道组合计数题
最近细品了 FJOI2020 的两道计数题,感觉抛开数据范围不清还卡常不谈里面的组合计数技巧还是挺不错的.由于这两道题都基于卡特兰数的拓展,所以我们把它们一并研究掉. 首先是 D1T3 ,先给出简要题 ...
- 「10.16晚」序列(....)·购物(性质)·计数题(DP)
A. 序列 考场不认真读题会死..... 读清题就很简单了,分成若干块,然后块内递增,块外递减,同时使最大的块长为$A$ B. 购物 考场思路太局限了,没有发现性质, 考虑将$a_{i}$,排序前缀和 ...
- hdu-6415 Rikka with Nash Equilibrium dp计数题
http://acm.hdu.edu.cn/showproblem.php?pid=6415 题意:将1~n*m填入一个n*m矩阵 问只有一个顶点的构造方案. 顶点的定义是:某数同时是本行本列的最大值 ...
- 【uoj428】普通的计数题
Portal --> uoj428 Solution 不会胖子的一个log正解qwq只能怂怂滴写分治了qwq 首先就是一个我想不到的转化qwq 我们将第\(i\)次操作加入的数看成一个编 ...
随机推荐
- 从零入门 Serverless | 函数计算的可观测性
作者 | 夏莞 阿里巴巴函数计算团队 本文整理自<Serverless 技术公开课>,关注"Serverless"公众号,回复"入门",即可获取 S ...
- FastAPI 学习之路(十九)处理错误
系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...
- 听说,99% 的 Go 程序员都被 defer 坑过
原文链接: 听说,99% 的 Go 程序员都被 defer 坑过 先声明:我被坑过. 之前写 Go 专栏时,写过一篇文章:Go 专栏|错误处理:defer,panic 和 recover.有小伙伴留言 ...
- 【UE4 C++】UKismetMathLibrary 源代码
// Copyright Epic Games, Inc. All Rights Reserved. #pragma once #include "CoreMinimal.h" # ...
- Spring父子上下文的使用案例
Spring父子上下文的使用案例 一.背景 二.需求 三.实现步骤 1.基础代码编写 2.测试结果 四.小彩蛋 五.完整代码 一.背景 最近在看在使用Spring Cloud的时候发现,当我们通过Fe ...
- netty中使用protobuf实现多协议的消息
在我们使用 netty 的过程中,有时候为了高效的传输数据,经常使用 protobuf 进行数据的传输,netty默认情况下为我们实现的 protobuf 的编解码,但是默认的只能实现单个对象的编解码 ...
- [LGP2758]编辑距离
目录 题目 题目描述 输入格式 输出格式 输入输出样例 题目分析 状态转移方程 初始状态 结束状态 Code 题目 题目描述 设A和B是两个字符串.我们要用最少的字符操作次数,将字符串A转换为字符串B ...
- Java RMI学习与解读(二)
Java RMI学习与解读(二) 写在前面 接上篇文章,这篇主要是跟着看下整个RMI过程中的源码并对其做简单的分析 RMI源码分析 还是先回顾下RMI流程: 创建远程对象接口(RemoteInterf ...
- RGB-YUV
1,RGB 1.1 RGB说明 RGB色彩模式是工业界的一种颜色标准,是通过对红(R).绿(G).蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即是代表红.绿.蓝三个通 ...
- VirtualBox问题解决合集 - [drm:vmw_host_log [vmwgfx]] *ERROR* Failed to send host log message
转载:https://blog.csdn.net/mychangee/article/details/104954262 问题描述:[drm:vmw_host_log [vmwgfx]] ERROR ...