python3使用concurrent执行多进程任务
技术背景
随着计算机技术的发展,诸如GPU和超算平台等越来越发达,这些技术的本质其实并没有带来算法上的革新,之所以能够提升计算的速度和规模,很大程度上是因为分布式和并行计算的优势。这里我们介绍一个简单的python自带的多进程的代码实现,使用的是concurrent这个工具,同时我们也会介绍如何更好的配置多进程的资源。
concurrent使用示例
concurrent
是python自带的一个多进程实现仓库,不需要额外的安装。这里我们先介绍一个没有多进程的示例代码:
# sleep.py
import time
def sleep(seconds):
time.sleep(seconds)
if __name__ == '__main__':
times = [1] * 10
time0 = time.time()
for t in times:
sleep(t)
time1 = time.time()
print ('The time cost is: {}s'.format(time1 - time0))
这个代码的功能其实就是休眠10s的时间,也比较容易,我们可以看一下这个代码的执行结果:
[dechin@dechin-manjaro concurrent]$ python3 sleep.py
The time cost is: 10.014754295349121s
在我们统计时间的时候,发现会比10s的时间多出来一些,这部分时间不仅仅包含这个python程序执行的时间,跟时间的统计方式也有一定的关系,一般我们可以忽略这部分的gap时间。
我们假定上面这个程序中的sleep函数
功能不是休眠1s的时间,而是执行一个耗时为1s的计算任务,而我们有很多的cpu,希望能够加速这个计算的过程,这个时候我们就需要用到多进程的技术,下面是修改为多进程之后的代码:
# concurrent_sleep.py
import concurrent.futures
import time
def sleep(seconds):
time.sleep(seconds)
if __name__ == '__main__':
times = [1] * 10
time0 = time.time()
with concurrent.futures.ProcessPoolExecutor() as executor:
executor.map(sleep, times)
time1 = time.time()
print ('The time cost is: {}s'.format(time1 - time0))
整个修改的方式也非常容易,就是把原代码中的for循环修改为concurrent的执行语句,让我们一起来看看执行的结果:
[dechin@dechin-manjaro concurrent]$ python3 concurrent_sleep.py
The time cost is: 2.0304219722747803s
从结果上我们可以看到,运行的时间从10s降低到了2s。这说明我们的多进程任务带来了非常显著的优化效果,至于为什么优化之后是2s而不是3s或者1s,这个问题将在下一个章节中进行介绍。
多进程的最佳配置
使用多进程的方案,能有多大的加速效果,很大程度上是依赖于硬件的。理论上来说,如果有n个cpu核,我们就可以实现n倍的加速。但是大部分情况下会受限于算法或者任务本身,跟n倍的加速之间有一定的gap。首先让我们用ipython来看看本地电脑上有多少个cpu:
[dechin@dechin-manjaro concurrent]$ ipython
Python 3.8.5 (default, Sep 4 2020, 07:30:14)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.19.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: import psutil
In [2]: psutil.cpu_count(logical=False)
Out[2]: 4
In [3]: psutil.cpu_count(logical=True)
Out[3]: 8
这里我们使用的是psutil
这个库,而不是常用的os或者multiprocessing,这是因为可以更好的区分逻辑核与物理核。我们本地的电脑上有4个物理核,每个物理核实际上对应于2个逻辑核,因此一共是有8个逻辑核。也就是说,理论上我们最大可以加速8倍的算法执行时间。让我们通过配置和修改一些参数来测试验证一下:
# concurrent_sleep.py
import concurrent.futures
import time
import sys
def sleep(seconds):
time.sleep(seconds)
if __name__ == '__main__':
if sys.argv[1] == '-t':
times = [1] * int(sys.argv[2]) # 获取命令行的时间输入参数
time0 = time.time()
with concurrent.futures.ProcessPoolExecutor() as executor:
executor.map(sleep, times)
time1 = time.time()
print ('The time cost is: {}s'.format(time1 - time0))
在这个示例中,为了方便调整,我们把总的休眠时间定为命令行的输入参数,使用的是sys.argv
这个函数来获取,注意获取到的参数是字符串格式的。这串代码的执行方法和执行结果如下所示:
[dechin@dechin-manjaro concurrent]$ python3 concurrent_sleep.py -t 16
The time cost is: 2.0304934978485107s
在上面的执行结果中,我们发现原本需要16s的休眠任务,在多进程场景下被加速到了2s,刚好符合我们对逻辑核的加速倍数的预期。但是前面提到,能否加速逻辑核的倍数,跟任务本身的算法也有关系。比如在本用例中,如果算法分配的结果就是需要17个子算法来进行实现,那么在每个逻辑核上面执行了2次的休眠任务之后,又有一个逻辑核需要再执行1次休眠任务,而此时其他的逻辑核都需要等待这个执行任务的逻辑核的任务结束。具体的执行结果如下所示:
[dechin@dechin-manjaro concurrent]$ python3 concurrent_sleep.py -t 17
The time cost is: 3.0313029289245605s
这个结果也验证了我们此前的预想,因为16s的任务执行需要2s的时间,而执行完16s的任务之后,又需要等待剩下的一个1s时长的任务执行完毕,总耗时3s。这里我们没有配置max_worker
的情况下,会按照系统中最高的逻辑核数来进行多进程的任务分配,但是在实际场景中我们需要考虑多种因素的限制,如内存和进程数的均衡配置(在大内存任务中,如果进程全开,有可能导致内存不足的问题)。只有在满足所有系统约束条件的情况下,才能发挥硬件最好的性能。在下面的代码中我们将给出如何配置执行任务的核数的方案:
# concurrent_sleep.py
import concurrent.futures
import time
import sys
def sleep(seconds):
time.sleep(seconds)
if __name__ == '__main__':
if sys.argv[1] == '-t':
times = [1] * int(sys.argv[2])
time0 = time.time()
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor:
executor.map(sleep, times)
time1 = time.time()
print ('The time cost is: {}s'.format(time1 - time0))
配置方法也很容易,就是在ProcessPoolExecutor
函数的入参中引入max_worker
,这里我们先将最大使用的核数设置为4,再来重新看一下上述用例的执行结果:
[dechin@dechin-manjaro concurrent]$ python3 concurrent_sleep.py -t 16
The time cost is: 4.032958030700684s
[dechin@dechin-manjaro concurrent]$ python3 concurrent_sleep.py -t 17
The time cost is: 5.032677173614502s
对于16s的任务,因为开了4个核的并行,因此在4s的时间内完成了任务。而17s的任务,同样是需要多等待1s的时间,总耗时为5s。
获取返回值
如果任务可以互相独立的去执行,互相之间并不需要通信,那自然是最理想的情况。但是更多的情况下,我们是要收集各个进程的返回值的,通过这个返回值,在各个进程之间进行通信。而在concurrent的情况下,map
函数的返回值直接就是所有进程的返回值所组成的列表,这更加方便了我们的任务执行。
# concurrent_sleep.py
import concurrent.futures
import time
import sys
def sleep(seconds):
time.sleep(seconds)
return seconds
if __name__ == '__main__':
if sys.argv[1] == '-t':
times = [1] * int(sys.argv[2])
time0 = time.time()
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor:
results = executor.map(sleep, times)
print ('The total sleep cpu time is: {}s'.format(sum(results)))
time1 = time.time()
print ('The time cost is: {}s'.format(time1 - time0))
在这个用例中,我们将map
函数的结果存储到results
这一参数中,最后对results进行求和的操作,这个简单的示例中,返回的结果实际上就是总的输入的休眠时间。执行结果如下所示:
[dechin@dechin-manjaro concurrent]$ python3 concurrent_sleep.py -t 16
The total sleep cpu time is: 16s
The time cost is: 4.034112930297852s
可以看到,所有的返回值被成功的获取到。
总结概要
多进程技术是独立于算法任务本身的一种优化技术,通过python中的concurrent库,我们可以非常容易的实现多进程的任务,用来优化已有的算法。这里我们也给出了一些多进程配置信息的参考方案,在GPU和超算相关的领域上,都能够发挥较大的用途。
版权声明
本文首发链接为:https://www.cnblogs.com/dechinphy/p/concurrent.html
作者ID:DechinPhy
更多原著文章请参考:https://www.cnblogs.com/dechinphy/
python3使用concurrent执行多进程任务的更多相关文章
- python3全栈开发-多进程的守护进程、进程同步、生产者消费者模式(重点)
一.守护进程 主进程创建守护进程 其一:守护进程会在主进程代码执行结束后就终止 其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes a ...
- python3:定时执行自动化测试脚本
转载请注明出处:https://www.cnblogs.com/shapeL/p/9172990.html 1.windows任务计划定时执行脚本 (1)创建 .bat 文件,执行脚本的命令(inte ...
- python3安装pandas执行pip3 install pandas命令后卡住不动的问题及安装scipy、sklearn库的numpy.distutils.system_info.NotFoundError: no lapack/blas resources found问题
一直尝试在python3中安装pandas等一系列软件,但每次执行pip3 install pandas后就卡住不动了,一直停在那,开始以为是pip命令的版本不对,还执行过 python -m pip ...
- python3使用pycuda执行简单GPU计算任务
技术背景 GPU的加速技术在深度学习.量子计算领域都已经被广泛的应用.其适用的计算模型是小内存的密集型计算场景,如果计算的模型内存较大,则需要使用到共享内存,这会直接导致巨大的数据交互的运算量,通信开 ...
- python一个文件里面多个函数同时执行(多进程的方法,并发)
#coding=utf-8 import timefrom selenium import webdriverimport threading def fun1(a): print a def fun ...
- 爬虫之python3用execjs执行JS代码
JS运行环境 Node.js 是Javascript语言服务器端运行环境 安装和配置:https://www.runoob.com/nodejs/nodejs-install-setup.html 测 ...
- Python3 线程/进程池 concurrent.futures
python3之concurrent.futures一个多线程多进程的直接对接模块,python3.2有线程池了 Python标准库为我们提供了threading和multiprocessing模块编 ...
- python3.6执行pip3时 Unable to create process using '"'
问题需求 由于在windows操作系统中已经安装了python2.7,要在安装python3的时候 将python3.6安装在C:\Python36目录下 然后进入C:\Python36目录下执行pi ...
- python3.x执行post请求时报错“POST data should be bytes or an iterable of bytes...”的解决方法
使用python3.5.1执行post请求时,一直报错"POST data should be bytes or an iterable of bytes. It cannot be of ...
随机推荐
- IP包头结构
版本号(Version): 长度4比特.标识目前采用的IP协议的版本号.一般的值为0100(IPv4),0110(IPv6) IP包头长度(Header Length): 长度4比特.这个字段的作用是 ...
- 敏捷 Scrum Master 的難點
什麼是 Scrum Master? Scrum master 是一個團隊角色,負責確保團隊遵守敏捷方法和原則並符合團隊的流程和實踐. Scrum Master 促進敏捷開發團隊成員之間的協作.Scru ...
- STM32的串口通信
本篇文章主要讲解一个在开发过程中经常使用到的一个外设---串口. 串口是绝大多数 MCU 中不可或缺的一个外设,同时也是我们开发中经常使用的一种调试手段,所以在STM32的学习中,串口的配置使用也是必 ...
- netty系列之:netty实现http2中的流控制
目录 简介 http2中的流控制 netty对http2流控制的封装 Http2FlowController Http2LocalFlowController Http2RemoteFlowContr ...
- 算法:Z字型(Zigzag)编排
问题:给定 n 行和 m 列的二维数组矩阵.如图所示,以 ZIG-ZAG 方式打印此矩阵. 从对称的角度来看,通过反复施加滑行反射可以从简单的图案如线段产生规则的之字形. 主要思想:算法从(0, 0) ...
- 重学STM32---(九)之CAN通信(一)
目录 1.CAN 是什么 2.CAN 特点 3.错误状态的种类 4.总线拓扑 5.CAN 协议 1.CAN 是什么 CAN 是 Controller Area Network的缩写(以下称为 CA ...
- C++ new 运算符 用法总结
C++ new 运算符 用法总结 使用 new 运算符 分配内存 并 初始化 1.分配内存初始化标量类型(如 int 或 double),在类型名后加初始值,并用小括号括起,C++11中也支持大括号. ...
- Java 网络编程 - 总结概述
IP地址 IP地址IntAddress 唯一定位一台网络上的计算机 127.0.0.1:本地localhost IP地址的分类 ipV4/ipV6 ipV4:127.0.0.1,4个字节组成:0~25 ...
- dart系列之:dart语言中的内置类型
目录 简介 Null 数字 字符串 布尔值 列表 set和map 简介 和所有的编程语言一样,dart有他内置的语言类型,这些内置类型都继承自Object,当然这些内置类型是dart语言的基础,只有掌 ...
- PTA 7-1 邻接矩阵表示法创建无向图 (20分)
PTA 7-1 邻接矩阵表示法创建无向图 (20分) 采用邻接矩阵表示法创建无向图G ,依次输出各顶点的度. 输入格式: 输入第一行中给出2个整数i(0<i≤10),j(j≥0),分别为图G的顶 ...