考虑到这种对于某种操作顺序有一个权值。

且这个权值有一个\(O(n)\)或者更好的复杂度求出。

求最值。

那可以用模拟退火。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#define ll long long
#define N 20 ll n,m; ll f[N][N]; ll in[N],dis[N]; inline ll find(){
ll ans = 0;
for(int i = 1;i <= n;++i)
dis[i] = 0;
for(int i = 2;i <= n;++i){
ll lim = 1e18;
for(int j = 1;j <= i - 1;++j){
if(lim > ((dis[in[j]] + 1) * f[in[j]][in[i]]))
lim = ((dis[in[j]] + 1) * f[in[j]][in[i]]),dis[in[i]] = dis[in[j]] + 1;
}
ans = ans + lim;
}
return ans;
} ll fans = 1e18; inline void sa(){
double T = 20000;
double eps = 1e-15;
while(T > eps){
ll z = -find();
int x,y;
x = rand() % n + 1;
y = rand() % n + 1;
fans = std::min(fans,-z);
std::swap(in[x],in[y]);
z = z + find();
if(z > 0 && exp(-z / T) * RAND_MAX < rand())
std::swap(in[x],in[y]);
T *= 0.996;
}
} int main(){
scanf("%lld%lld",&n,&m);
for(int i = 1;i <= N;++i)
for(int j = 1;j <= N;++j)
f[i][j] = 1e18;
for(int i = 1;i <= m;++i){
ll x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
f[x][y] = std::min(z,f[x][y]);
f[y][x] = std::min(z,f[y][x]);
}
for(int i = 1;i <= n;++i)
in[i] = i;
fans = find();
while(((double)(clock())/CLOCKS_PER_SEC)<0.5)
sa();
std::cout<<fans<<std::endl;
}

[NOIP2017 提高组] 宝藏的更多相关文章

  1. NOIP2017[提高组] 宝藏 题解

    解析 我们观察范围可以发现n非常的小,(一般来说不是搜索就是状压dp)所以说对于这题我们可以用记忆化搜索或者dp,我们发现起点不同那么最终答案也就不同,也就是说答案是跟起点有关的,于是我们便可以想到去 ...

  2. [NOIp2017提高组]宝藏

    #include<cstdio> #include<cctype> #include<algorithm> inline int getint() { regist ...

  3. 题解 [NOIP2017 提高组]宝藏

    传送门 这是蓝书上状压的例题啊,怎么会出现在模拟赛里 不过就算原题我也没把握写对 核心思路: 先令\(dp[s]\)为当前状态为\(s\)时的总花费最小值,\(cnt[s][i]\)为这个方案中由根节 ...

  4. 【题解】NOIP2017 提高组 简要题解

    [题解]NOIP2017 提高组 简要题解 小凯的疑惑(数论) 不讲 时间复杂度 大力模拟 奶酪 并查集模板题 宝藏 最优解一定存在一种构造方法是按照深度一步步生成所有的联通性. 枚举一个根,随后设\ ...

  5. [NOIp2017提高组]列队

    [NOIp2017提高组]列队 题目大意 一个\(n\times m(n,m\le3\times10^5)\)的方阵,每个格子里的人都有一个编号.初始时第\(i\)行第\(j\)列的编号为\((i-1 ...

  6. JZOJ 5196. 【NOIP2017提高组模拟7.3】B

    5196. [NOIP2017提高组模拟7.3]B Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed Limits   Goto Pro ...

  7. JZOJ 5197. 【NOIP2017提高组模拟7.3】C

    5197. [NOIP2017提高组模拟7.3]C Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed Limits   Goto Pro ...

  8. JZOJ 5195. 【NOIP2017提高组模拟7.3】A

    5195. [NOIP2017提高组模拟7.3]A Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed Limits   Goto Pro ...

  9. JZOJ 5184. 【NOIP2017提高组模拟6.29】Gift

    5184. [NOIP2017提高组模拟6.29]Gift (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

随机推荐

  1. 内网渗透DC-2靶场通关(CTF)

    为了更好的阅读体验,请在pc端打开我的个人博客 DC系列共9个靶场,本次来试玩一下DC-2,共有5个flag,下载地址. 下载下来后是 .ova 格式,建议使用vitualbox进行搭建,vmware ...

  2. ZK(ZooKeeper)分布式锁实现

    点赞再看,养成习惯,微信搜索[牧小农]关注我获取更多资讯,风里雨里,小农等你. 本文中案例都会在上传到git上,请放心浏览 git地址:https://github.com/muxiaonong/Zo ...

  3. 【Spring】IoC容器 - 依赖来源

    前言 上一篇文章已经学习了[依赖注入]相关的知识,这里详细的介绍一下[依赖来源]. 依赖来源 我们把依赖来源分为依赖查找的来源和依赖注入的来源分别讨论. 依赖查找的来源 1. Spring BeanD ...

  4. ScatterLayout:分散布局在py中的引用

    """ ScatterLayout:分散布局 """ from kivy.app import App from kivy.uix.scat ...

  5. pagelayout在py中的引用不支持size_hint和pos_hint

    from kivy.uix.pagelayout import PageLayout from kivy.uix.button import Button from kivy.app import A ...

  6. [技术博客] K-Means算法

    遇到的问题 在对微软\(OCR\)的\(api\)进行测试的过程中,我发现有时候它并不能分析出一个表格的形态,也就是说不知道每个文本对应在表格中的第几行第几列.但是它可以较为准确的给出这些文本的坐标. ...

  7. xiaoxiaole

    common.cpp #include "common.h" common.h #ifndef COMMON_H_INCLUDED #define COMMON_H_INCLUDE ...

  8. 挂载nfs存储

    查看nfs服务器上提供了哪些nfs目录 showmount -e 172.16.3.8 使用showmount前需要安装nfs-utils包 yum install nfs-utils -y 挂载nf ...

  9. char* 和 char[] 的区别

    一.代码 有关下面代码,p和q的区别是什么: int main(int argc, char *argv[]) { char* p = "Hello World"; char q[ ...

  10. SpringBoot之MultipartFile文件上传(6)

    1.静态文件 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <ti ...