洛谷 P2680 [NOIP2015 提高组] 运输计划
链接:P2680
题意:
在树上把一条边边权变为0使得最长给定路径最短
分析:
最大值最小可以想到二分答案,对于每一个mid,寻找所有大于mid的路径,再寻找是否存在一条边使得删去它后大于mid的路径都小于等于mid,可以将这个条件分成两部分。
所有大于mid的路径都经过该边。可以想到统计路径数和每条边被经过的次数,前者可以在添加大于mid的路径时统计,后者则可以用树上边的差分搞定。
每条大于mid的路径删去这条边后都小于等于mid。我们发现在添加路径时如果大于mid的路径数为零则任何一条边根本不用删都可以直接满足条件,那么可以直接二分下去;如果路径数不为零,那么最长路径一定会被添加进来,而且在(1)的条件下,如果最长路径删去这条边都小于等于mid,那么每条大于mid的路径删去这条边后都小于等于mid,所以条件(2)变为最长路径减该边长度小于等于mid,对于两个端点的路径长度,只需要倍增求一下LCA,同时记录路径最大值。每条边的长度以及树上前缀和都可以在预处理LCA时一起解决。
然后我们发现这道题就做完了 。最后注意一下细节,比如二分的左边要从0开始。
那么我们就可以happily AC了。
代码:
#include<bits/stdc++.h>
using namespace std;
int n,m;
inline int read(){
int p=0,f=1;
char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){p=p*10+c-'0';c=getchar();}
return f*p;
}//快读
struct edge{
int b;
int w;
int next;
}e[600005];
int en,head[300005];//邻接表存图
int d[300005],f[300005][19];//倍增求LCA
int ev[300005];//记录每条边的长度并存到子节点中
int cf[300005];//树上边差分
int ans[300005];//通过差分得每条边经过的次数
long long dist[300005];//根到节点的距离
int x[300005],y[300005];
int t[300005],len[300005];//对于每次任务,x,y记录其路径端点,t为x,y的LCA,len为其长度
int maxn;//最大任务路径长度
void insert(int a,int b,int v){
e[++en].b=b;
e[en].next=head[a];
e[en].w=v;
head[a]=en;
}//存边
void dfs(int fa,int now){
f[now][0]=fa;
d[now]=d[fa]+1;
for(int i=0;i<=17;i++)
f[now][i+1]=f[f[now][i]][i];//LCA
for(int x=head[now];x;x=e[x].next){
int v=e[x].b;
if(v==fa) continue;
ev[v]=e[x].w;//化边为点
dist[v]=dist[now]+e[x].w;//节点到根的距离
dfs(now,v);
}
}//dfs同时预处理LCA,化边为点,节点到根的距离
int LCA(int x,int y){
if(d[x]<d[y])swap(x,y);
for(int i=18;i>=0;i--){
if(d[f[x][i]]>=d[y])x=f[x][i];
if(x==y) return x;
}
for(int i=18;i>=0;i--){
if(f[x][i]!=f[y][i]){
x=f[x][i];
y=f[y][i];
}
}
return f[x][0];
}//倍增求LCA
int getans(int fa,int now){
int x=head[now];
while(x!=0){
if(e[x].b!=fa)
ans[now]+=getans(now,e[x].b);
x=e[x].next;
}
ans[now]+=cf[now];
return ans[now];
}//树上边差分得每条边经过的次数
int erfen(int l,int r){
if(l==r)
return l;
memset(cf,0,sizeof(cf));
memset(ans,0,sizeof(ans));//清零
int mid=(l+r)/2;//二分最小的最大值
int tim=0;
for(int i=1;i<=m;i++){
if(len[i]>mid){//把所有大于mid的路径丢进去
cf[x[i]]++;
cf[y[i]]++;
cf[t[i]]-=2;
tim++;//记录路径数
}
}
if(tim==0)//没有比mid大的路径,不用删边都满足题意,mid大了
return erfen(l,mid);
int tt=getans(0,1);//差分
for(int i=2;i<=n;i++)
if(ans[i]==tim&&maxn-ev[i]<=mid)
//ans[i]==tim 意为 所有比mid大的路径都经过这条边 即条件1
//maxn-ev[i]<=mid 意为 删边后最长路径满足mid 即条件2
return erfen(l,mid);//删边后满足题意,mid大了
return erfen(mid+1,r);//不满足mid,mid小了
}//二分答案
int main(){
n=read();m=read();
for(int i=1;i<n;i++){
int a,b,c;
a=read();b=read();c=read();
insert(a,b,c);
insert(b,a,c);
}//存边
dfs(0,1);//预处理
for(int i=1;i<=m;i++){
x[i]=read();y[i]=read();
t[i]=LCA(x[i],y[i]);
len[i]=dist[x[i]]+dist[y[i]]-2*dist[t[i]];//算路径长度
maxn=max(maxn,len[i]);//记录最长距离
}
int l=erfen(0,maxn);//左边一定要从0开始,不能排除答案为0
printf("%d",l);
return 0;
}
题外话:
蒟蒻的第一篇博客!!!发现题解有大佬和我做法一样,果然还是我太弱了
洛谷 P2680 [NOIP2015 提高组] 运输计划的更多相关文章
- P2680 [NOIP2015 提高组] 运输计划 (树上差分-边差分)
P2680 题目的大意就是走完m条路径所需要的最短时间(边权是时间), 其中我们可以把一条边的权值变成0(也就是题目所说的虫洞). 可以考虑二分答案x,找到一条边,使得所有大于x的路径都经过这条边(差 ...
- [NOIP2015 提高组] 运输计划题解
题目链接:P2680 [NOIP2015 提高组] 运输计划 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 看了好长时间题解才终于懂的,有关lca和二分答案的题解解释的不详细,一时 ...
- NOIP2015 提高组] 运输计划
码农题啊兄弟们. 随便考虑二分一下,然后发现要取一条满足性质的边. 被所有大于\(mid\)的路径都覆盖,取了之后能把他们都弄到小于\(mid\) 那就树上差分再处理一下. 写了\(180h\),老年 ...
- [NOIP2015提高组]运输计划
题目:BZOJ4326.洛谷P2680.Vijos P1983.UOJ#150.codevs4632.codevs5440. 题目大意:有一棵带权树,有一些运输计划,第i个运输计划从ai到bi,耗时为 ...
- 洛谷 P2678 & [NOIP2015提高组] 跳石头
题目链接 https://www.luogu.org/problemnew/show/P2678 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布 ...
- 题解——洛谷 P2680 NOIP提高组 2015 运输计划
树上差分加上二分答案 详细题解待填坑 #include <cstdio> #include <algorithm> #include <cstring> using ...
- 洛谷P1080 [NOIP2012提高组D1T2]国王游戏 [2017年5月计划 清北学堂51精英班Day1]
P1080 国王游戏 题目描述 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右 手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排 ...
- 【模板】LIS模板 洛谷P1091 [NOIP2004提高组]合唱队形 [2017年4月计划 动态规划11]
以题写模板. 写了两个:n^2版本与nlogn版本 P1091 合唱队形 题目描述 N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形. 合唱队形是指这样的一种队 ...
- 洛谷 P1025 & [NOIP2001提高组] 数的划分(搜索剪枝)
题目链接 https://www.luogu.org/problemnew/show/P1025 解题思路 一道简单的dfs题,但是需要剪枝,否则会TLE. 我们用dfs(a,u,num)来表示上一个 ...
随机推荐
- Apache网页优化
目录: 一.Apache网页优化概述 二.网页压缩 三.网页缓存 四.隐藏版本信息 五.Apache防盗链 一.Apache网页优化概述 在企业中,部署Apache后只采用默认的配置参数,会引发网站很 ...
- C语言学习笔记---2.C语言数据类型
1.C语言基本数据类型 1.1 int类型 int类型是有符号整型,即int类型的值必须是整数,可以是正整数.负整数或零.其取值范围依计算机系统而异.一般而言,储存一个int要占用一个机器字长. 声明 ...
- ☕【Java技术指南】「并发编程专题」针对于Guava RateLimiter限流器的入门到精通(含实战开发技巧)
并发编程的三剑客 在开发高并发系统时有三剑客:缓存.降级和限流. 缓存 缓存的目的是提升系统访问速度和增大系统处理容量. 降级 降级是当服务出现问题或者影响到核心流程时,需要暂时屏蔽掉,待高峰或者问题 ...
- 消息队列之 kafka 集群搭建
我们先弄清楚kafka集群环境首先需要些什么 JDK 10+ Zookeeper Kafka 2.x 首先准备三台虚拟机 centos7 ,更改IP地址为静态地址分别为,29.30.31 cd /et ...
- 网络协议之:WebSocket的消息格式
目录 简介 WebSocket的握手流程 webSocket的消息格式 Extensions和Subprotocols 总结 简介 我们知道WebSocket是建立在TCP协议基础上的一种网络协议,用 ...
- GDOI2021划水记
Day0 上午有意志行,一大早就醒了,然后走了五个小时脚痛.中午洗澡,宿舍轮流看巨人最终话然后聊了一个小时? 下午老师带着我和全爷先开溜,宿舍好像很破旧还还没得充电,领了牌牌和斐爷去吃饭. 然后六点多 ...
- MacOS下terminal防止ssh自动断开的方法和自动断开的原因
之前换了个工作环境,用terminal连接远程服务器的时候老是出现自动断开的情况,搞得我很是郁闷.因为之前在家的时候,并没有出现过类似情况.后来在网上找了很久,发现国外网站上有个大神说应该是有些路由器 ...
- Python 文件路径设置
菜鸟教程:https://www.runoob.com/python/os-chdir.html Python官方文件教程:https://docs.python.org/3.9/library/os ...
- Docker安装ElasticSearch5.6.8
前言 因实验室项目需要,准备docker安装个ES , 使用TransportClient练练手,然后死活连接不上 环境准备 系统:centos7 软件:docker ElasticSearch版本: ...
- 5.深入TiDB:Insert 语句
本文基于 TiDB release-5.1进行分析,需要用到 Go 1.16以后的版本 我的博客地址:https://www.luozhiyun.com/archives/605 这篇文章我们看一下 ...