1137. 第 N 个泰波那契数

泰波那契序列 Tn 定义如下:

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2

给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

示例 1:

  输入:n = 4
  输出:4
  解释:
  T_3 = 0 + 1 + 1 = 2
  T_4 = 1 + 1 + 2 = 4
示例 2:

  输入:n = 25
  输出:1389537

方法一:空间优化:动态计算

  • 如果 n < 3,答案可直接得出。

  • 否则,初始化前 3 个斐波那契数字 x = 0, y = z = 1,并执行 n - 2 步循环。循环的每一步:

    • 令 x = y

    • 令 y = z

    • 令 z = x + y + z

    • 返回z。
class Solution {
public int tribonacci(int n) {
if (n < 3) return n == 0 ? 0 : 1; int tmp, x = 0, y = 1, z = 1;
for (int i = 3; i <= n; ++i) {
tmp = x + y + z;
x = y;
y = z;
z = tmp;
}
return z;
}
}

复杂度分析

  • 时间复杂度:O(N)。

  • 空间复杂度:O(1),保存最后 3 个斐波那契数。

方法二:性能优化:带记忆的递归

预计算 38 个斐波那契数:

  • 初始化一个数组 nums 用于保存斐波那契数,并记录前 3 个斐波那契数。

  • 返回 helper(n - 1)

递归方法 helper(k)

  • 如果 k == 0,返回 0。
  • 如果 nums[k] != 0,返回 nums[k]。
  • 否则 nums[k] = helper(k - 1) + helper(k - 2) + helper(k - 3),返回 nums[k]。

从预计算的数组中检索所需的斐波那契数。

class Tri {
private int n = 38;
public int[] nums = new int[n]; int helper(int k) {
if (k == 0) return 0;
if (nums[k] != 0) return nums[k]; nums[k] = helper(k - 1) + helper(k - 2) + helper(k - 3);
return nums[k];
} Tri() {
nums[1] = 1;
nums[2] = 1;
helper(n - 1);
}
} class Solution {
public static Tri t = new Tri();
public int tribonacci(int n) {
return t.nums[n];
}
}

复杂度分析

时间复杂度:O(1),预计算 38 个斐波那契数,并在数组中检索。

空间复杂度:O(1),存储 38 个斐波那契数的数组。

方法三:性能优化:动态计算
  预计算 38 个斐波那契数:

  初始化一个数组用于保存斐波那契数,并初始化前 3 个斐波那契数字。

  i 从 3 循环到 38,每一步计算出一个新的斐波那契数:nums[i] = helper(i - 1) + helper(i - 2) + helper(i - 3)。

  从数组中检索所需的斐波那契数。

class Tri {
private int n = 38;
public int[] nums = new int[n];
Tri() {
nums[1] = 1;
nums[2] = 1;
for (int i = 3; i < n; ++i)
nums[i] = nums[i - 1] + nums[i - 2] + nums[i - 3];
}
} class Solution {
public static Tri t = new Tri();
public int tribonacci(int n) {
return t.nums[n];
}
}

1137. 第 N 个泰波那契数的更多相关文章

  1. 刷题-力扣-1137. 第 N 个泰波那契数

    1137. 第 N 个泰波那契数 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/n-th-tribonacci-number 著作权 ...

  2. LeetCode.1137-第N个泰波那契数(N-th Tribonacci Number)

    这是小川的第409次更新,第441篇原创 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第260题(顺位题号是1137).Tribonacci(泰波那契)序列Tn定义如下: 对于n&g ...

  3. UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数

    大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...

  4. 斐波那契数[XDU1049]

    Problem 1049 - 斐波那契数 Time Limit: 1000MS   Memory Limit: 65536KB   Difficulty: Total Submit: 1673  Ac ...

  5. C++求斐波那契数

    题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 …… ...

  6. Project Euler 104:Pandigital Fibonacci ends 两端为全数字的斐波那契数

    Pandigital Fibonacci ends The Fibonacci sequence is defined by the recurrence relation: F[n] = F[n-1 ...

  7. DP:斐波纳契数

    题目:输出第 n 个斐波纳契数(Fibonacci) 方法一.简单递归 这个就不说了,小n怡情,大n伤身啊……当n=40的时候,就明显感觉到卡了,不是一般的慢. //输出第n个 Fibonacci 数 ...

  8. HDU4549 M斐波那契数

    M斐波那契数列 题目分析: M斐波那契数列F[n]是一种整数数列,它的定义例如以下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 如今给 ...

  9. HDU 5914 Triangle(打表——斐波那契数的应用)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5914 Problem Description Mr. Frog has n sticks, whos ...

随机推荐

  1. 跟我一起写 Makefile(十四)

    使用make更新函数库文件 ----------- 函数库文件也就是对Object文件(程序编译的中间文件)的打包文件.在Unix下,一般是由命令"ar"来完成打包工作. 一.函数 ...

  2. [BZOJ2906]「颜色」

    为什么C++ (11)-O2如此之快,直接优化1000ms... 强制在线,只能分块了. 本题应当预处理出每个块到后面几个块的每种数的平方与数量的前缀和. 由于空间限制,块长只能开到n的2/3次方, ...

  3. windows10磁盘分区后,如何恢复分区,回到未分区之前

    windows10磁盘分区后,恢复到分区以前的状态 1.我的电脑右键======>管理 2.找到磁盘管理 3.因为我的H盘原来是和F盘是同一个分区,只是拆分出来了,所有,找到H盘(确保数据都做过 ...

  4. PHP随手记2--获取随机n位不重复字符

    定义一个函数返回26英文字母中n位不重复随机字符 基本思路是利用内置函数生成随机数,取出该位置字母之后将其删除,再进行下一次随机,最后实现字符串拼接就ok! 代码很简单,通俗易懂,直接上代码吧: 1 ...

  5. Linux centos 安装 mysql 5.7

    一.mysql下载 1.方式一(简单粗暴) 直接在linux 目录下:wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.25-l ...

  6. 高德地图&兴趣点(poi)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  7. Ubuntu18.04 + NVidia显卡 + Anaconda3 + Tensorflow-GPU 安装、配置、测试 (无需手动安装CUDA)

    其中其决定作用的是这篇文章  https://www.pugetsystems.com/labs/hpc/Install-TensorFlow-with-GPU-Support-the-Easy-Wa ...

  8. 手写个jsonp

    原生jsonp具体实现 先上代码: //http://www.baidu.com?aa=11&callback=my_jsonp04349289664328899 var jsonp = fu ...

  9. 微前端框架single-spa初探

    前言 最近入职的一家公司采用single-spa这个微前端框架,所以自学了此框架. single-spa这个微前端框架虽然有中文文档,但是有些零散和晦涩. 所以我想在学习之余,写篇博客拉平一下这个学习 ...

  10. 【SpringMVC】视图

    SpringMVC中的视图是View接口,视图的作用渲染数据,将模型Model中的数据展示给用户 SpringMVC视图的种类很多,默认有转发视图和重定向视图 当工程引入jstl的依赖,转发视图会自动 ...