MXNet学习-第一个例子:训练MNIST数据集
一个门外汉写的MXNET跑MNIST的例子,三层全连接层最后验证率是97%左右,毕竟是第一个例子,主要就是用来理解MXNet怎么使用。
#导入需要的模块
import numpy as np #numpy只保存数值,用于数值运算,解决Python标准库中的list只能保存对象的指针的问题
import os #本例子中没有使用到
import gzip #使用zlib来压缩和解压缩数据文件,读写gzip文件
import struct #通过引入struct模块来处理图片中的二进制数据
import mxnet as mx #引入MXNet包
import logging #引入logging包记录日志 #利用MNIST数据集进行训练 def read_data(label_url,image_url): #定义读取数据的函数
with gzip.open(label_url) as flbl: #解压标签包
magic, num = struct.unpack(">II",flbl.read(8)) #采用Big Endian的方式读取两个int类型的数据,且参考MNIST官方格式介绍,magic即为magic number (MSB first) 用于表示文件格式,num即为文件夹内包含的数据的数量
label = np.fromstring(flbl.read(),dtype=np.int8) #将标签包中的每一个二进制数据转化成其对应的十进制数据,且转换后的数据格式为int8(-128 to 127)格式,返回一个数组
with gzip.open(image_url,'rb') as fimg: #已只读形式解压图像包
magic, num, rows, cols = struct.unpack(">IIII",fimg.read(16)) #采用Big Endian的方式读取四个int类型数据,且参考MNIST官方格式介绍,magic和num上同,rows和cols即表示图片的行数和列数
image = np.fromstring(fimg.read(),dtype=np.uint8).reshape(len(label),rows,cols) #将图片包中的二进制数据读取后转换成无符号的int8格式的数组,并且以标签总个数,行数,列数重塑成一个新的多维数组
return (label,image) #返回读取成功的label数组和image数组
#且fileobject.read(size)的时候是按照流的方式读取(可test) (train_lbl, train_img) = read_data('mnist/train-labels-idx1-ubyte.gz','mnist/train-images-idx3-ubyte.gz') #构建训练数据
(val_lbl, val_img) = read_data('mnist/t10k-labels-idx1-ubyte.gz','mnist/t10k-images-idx3-ubyte.gz') #构建测试数据 def to4d(img): #定义一个函数用于生成四维矩阵
return img.reshape(img.shape[0],1,28,28).astype(np.float32)/255 #将图像包中的数组以标签总个数,图像通道数(MNIST数据集为黑白数据集故只为1),行数,列数重塑后复制为一个数据类型为float32的新的四维矩阵,且其中的元素值都除以255后转化为0-1的浮点值 batch_size = 100 #定义每次处理数据的数量为100
train_iter = mx.io.NDArrayIter(to4d(train_img),train_lbl,batch_size,shuffle=True) #构建训练数据迭代器,且其中shuffle表示采用可拖动的方式,意味着可以将在早期已经训练过的数据在后面再次训练
val_iter = mx.io.NDArrayIter(to4d(val_img),val_lbl,batch_size) #构建测试数据迭代器 #创建多层网络模型
data = mx.sym.Variable('data') #创建一个用于输入数据的PlaceHolder变量(占位符)
data = mx.sym.Flatten(data=data) #将data中的四维数据转化为二维数据且其中一维为每次处理数据的数量,第二维即为每张图片的图像通道数×长×宽(即为其像素点个数×图像通道数)
fc1 = mx.sym.FullyConnected(data=data,name='fc1',num_hidden=128) #创建第一层全连接层,输入数据为data,num_hidden表示该隐藏层有128个用于输出的节点
act1 = mx.sym.Activation(data=fc1,name='relu1',act_type='relu') #为第一层全连接层设定一个Relu激活函数,输入数据为fc1
fc2 = mx.sym.FullyConnected(data=act1,name='fc2',num_hidden=64) #创建第二层全连接层,输入数据为act1,num_hidden表示该隐藏层有64个用于输出的节点
act2 = mx.sym.Activation(data=fc2,name='relu2',act_type='relu') #为第一层全连接层设定一个Relu激活函数,输入数据为fc2
fc3 = mx.sym.FullyConnected(data=act2,Name='fc3',num_hidden=10) #创建第三层全连接层,输入数据为act2,num_hidden表示该隐藏层有10个用于输出的节点
mlp = mx.sym.SoftmaxOutput(data=fc3,name='softmax') #对输入的数据执行softmax变换,并且通过利用logloss执行BP算法 logging.getLogger().setLevel(logging.DEBUG) #返回作为层次结构根记录器的记录器,且记录等级作为DEBUG #构建前馈神经网络模型
model = mx.model.FeedForward(
symbol = mlp, #使网络结构为构建好的mlp
num_epoch = 10, #数据的训练次数为10
learning_rate = 0.1 #使模型按照学习率为0.1进行训练
)
#数据拟合,训练模型
model.fit(
X = train_iter, #设置训练迭代器
eval_data = val_iter, #设置测试迭代器
batch_end_callback = mx.callback.Speedometer(batch_size,200) #在每一批epoches结尾时调用,打印logging信息(每经过200个batch_size打印logging)
)
MXNet学习-第一个例子:训练MNIST数据集的更多相关文章
- Keras学习:第一个例子-训练MNIST数据集
import numpy as npimport gzip import struct import keras as ks import logging from keras.layers impo ...
- 使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
- 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...
- 【Mxnet】----1、使用mxnet训练mnist数据集
使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list
- TensorFlow 训练MNIST数据集(2)—— 多层神经网络
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...
- 深度学习(一)之MNIST数据集分类
任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 py ...
- TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import inp ...
- 搭建简单模型训练MNIST数据集
# -*- coding = utf-8 -*- # @Time : 2021/3/16 # @Author : pistachio # @File : test1.py # @Software : ...
- mxnet卷积神经网络训练MNIST数据集测试
mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging. ...
随机推荐
- PowerShell 教程
随笔分类 - 教程 转载自:https://www.cnblogs.com/XiaoCY/category/1065141.html PowerShell 管道符之Where-Object的使用方法 ...
- git branch --set-upstream-to 本地关联远程分支
最近使用git pull的时候多次碰见下面的情况: There is no tracking information for the current branch. Please specify wh ...
- 新建koa2项目
1.npm install -g koa-generator 2.koa2 项目名称,如果需要ejs引擎koa2 -e 项目名称 3.cd 项目名称 4.npm install 5.npm insta ...
- 通过了解Servlet和Http之间的关系,了解web中http通信使用
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6512336761551585796/ 1.<Servlet简单实现开发部署过程> 2.<Serv ...
- 微信小程序输入框上移问题解决
微信小程序的输入框在上面还好,如果不是,在聚焦的时候页面就会上移,上方的页面信息会看不到,影响用户操作 在这里可以手动设置并获取输入框的高度来解决 这种方式虽然有的机子有点卡,但是已经算是比较完美的解 ...
- POJ2891Strange Way to Express Integers
http://poj.org/problem?id=2891 实际上就是一个一元线性同余方程组.按照合并的方式来解即可. 有一个注意点,调用函数是会慢的. #include<iostream&g ...
- F2BPM的流程仿真
仿真概述 F2BPM工作流仿真是一种通过建立工作流虚拟运行环境执行工作流仿真的方法.集中式仿真引擎解释工作流仿真模型,仿真活动的执行,处理仿真过程中的不确定性,从而完成工作流模型的仿真.同时,会实时显 ...
- leetcode 54. 螺旋矩阵 及 59. 螺旋矩阵 II
54. 螺旋矩阵 问题描述 给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素. 示例 1: 输入: [ [ 1, 2, 3 ], [ 4, 5, ...
- JS调用堆栈
调用栈 JavaScript 是一门单线程的语言,这意味着它只有一个调用栈,因此,它同一时间只能做一件事.如果我们运行到一个函数,它就会将其放置到栈顶.当从这个函数返回的时候,就会将这个函数从栈顶弹出 ...
- Python 为什么不设计 do-while 循环结构?
在某些编程语言中,例如 C/C++.C#.PHP.Java.JavaScript 等等,do-while 是一种基本的循环结构. 它的核心语义是:先执行一遍循环体代码,然后执行一遍条件语句,若条件语句 ...